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ABSTRACT 

This study analyzed the first price sealed bid auction (FPSBA) using computer 

simulations. The first price sealed bid auction is a static Bayesian game with incomplete 

information. These games have a well-defined symmetric Bayesian Nash equilibrium. The 

existence of the equilibrium makes it possible to find the bidders' equilibrium strategies. 

The equilibrium strategy maximizes the bidders' profit. This thesis assumes, (1) the 

bidders act rationally and have private information about their production cost, (2) the 

bidders' preferences and information are symmetric, (3) the buyer committed not to 

deviate from the auction rules, even if a deviation would be profitable. Considering these 

assumptions and the equilibrium strategy, this Thesis constructed a FPSBA model. The 

model was transformed into an algorithm and coded in Visual Basic language. The code 

was used to simulate the FPSBA in different scenarios. The simulation showed the 

bidders' behavior and identified factors affecting the bidders' decision during bid 

preparation. Critical factors include the cost distribution and number of bidders. The 

concluding chapter presents the analytical results. 
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I. INTRODUCTION 

Hungary assumes that establishing a stable security environment on the European 

Continent is in her vital interest. The transformation to a stable democracy in Central and 

Eastern Europe has contributed to the security of the region and Europe as a whole. At 

the same time, the social tensions within the transforming countries, ethnic and religious 

diversities rooted in history, require the permanent development of a new security 

architecture. 

Hungary's strategic goal is to gain full membership in the existing international 

security and defense organizations, including the Western European Union and NATO. 

The country's geostrategic position, fundamentals, material and human resources justify 

maintaining armed forces with self-defense capabilities comparable to similar Central and 

Eastern European countries. However, Hungary deems her armed forces to be the very 

last means of self-defense. 

The Republic of Hungary has made a commitment to join the North Atlantic 

Treaty Organization (NATO) in the near future, and to transform her armed forces into a 

modern force capable of meeting the NATO's military standards. 

In due course we are preparing ourselves for participating in missions deriving 
from NATO basic principles, such as the common defense pronounced in Article 5 of 
the Washington Treaty, furthermore to contribute to peacekeeping operations, 
humanitarian and other new missions. Regarding the modernization of the Hungarian 
Defense Forces (HDF), we intend to harmonize ourselves with the major polices and 
priorities indicated in the NATO Enlargement Study. [Ref. 1] 

Modernization of the Hungarian Defense Forces (HDF) has already started. The 

winner of the low-level air-defense system tender was announced in February 1997. A new 

request for proposal will be solicited for modernizing the air surveillance systems in the 

near future. Hungary is considering rejuvenating her Air Force and other outdated military 

hardware as well. These initiatives require new practices of procurement source selection 

that use the country's scarce resources more efficiently. 

The Public Procurement Law of Hungary, enacted in 1995, defines the 

requirement for public acquisition of goods and  services in Hungary.  The Public 



Procurement Law obligates the public fund users to select suppliers on a competitive 

bases. The Law outlines the methods of public procurement and it states that 'all 

contracts exceeding value of HUF 5,000,000 [Apr. $35,000] should be awarded to the 

winner of a publicly announced tender." [Ref. 2] The winner is the best bid when all other 

conditions are equal. 

Market conditions in Hungary are changing day after day. New potential sources 

for military procurement come into sight and disappear. The international market, where 

the HDF expects to acquire its military equipment, differs geographically and economically 

as well. It includes all the major defense industry players in NATO and non-NATO 

countries. As the economic conditions are diverse, so various are the offers coming from 

the bidders. A fair and efficient method of bid selection can increase efficiency in using the 

HDF scarce resources. 

Auctions are one of the market institutions that provide a competitive environment 

for public procurement. Auctioning practice and theory classify auctions in two major 

groups; first and second price auctions. In a first-price auction, the bidders submit their 

bids simultaneously and the lowest bidder wins the auction at the bid price. Rules of 

second-price sealed bid auctions stipulate that the bidder submitting the lowest (highest) 

bid win the auction and pay the second lowest (highest) price. [Ref. 3] The first-price 

sealed bid auction is one of the basic tools for source selection in the Government 

procurement and in the HDF in particular. While the second-price sealed bid auction has 

useful theoretical properties, it is rarely used in practice and it has never been used in 

Hungary. 

To understand the strategic behavior of the bidders and to find opportunities to 

influence the recent auctioning practice in the HDF, this thesis proposes a model of the 

FPSBA. The model describes the strategic behavior of the bidders and their actions in 

conditions similar to the actual bidding conditions, based on findings of Game Theory. 



A.        AN OVERVIEW OF THE HDF PROCUREMENT ACTIVITY 

The HDF has a composite procurement system. It consists of two major 

subsystems; they are the unit-level, decentralized procurement subsystem and the 

centralized acquisition subsystem. The decentralized subsystem buys goods and services 

from the local market (food for the soldiers, building maintenance service for barracks 

buildings and similar activities). The volume of local procurement is significant and it is 

approximately 15-20 % of HDF's over all maintenance costs. The centralized 

procurement system acquires goods and services for the HDF, to keep up the combat 

readiness of the troops and to provide planed development of military hardware. 

To comply with the Public Procurement Law of Hungary, the military procurement 

system uses competitive acquisition from abroad and from the domestic market. As the 

market economy advances in Hungary, more domestic potential suppliers come into view 

for the HDF. However, in some areas of military procurement, sole source acquisition 

remains the practice. The complexity of market conditions and the diverse assortment of 

the goods and services under procurement require proper acquisition practices from the 

HDF. Understanding the behavioral patterns of the potential supplier, their motivations 

and strategic behavior better prepares the buyer. The more prepared the buyers, the better 

are their chance of concluding effective and efficient business deals. 

The HDF and the acquisition organization of the Hungary's Ministry of Defense 

use a wide variety of competitive procurement policies and practices. Sealed bid auctions 

have been extensive applied recently by the HDF. They have been used in purchasing 

major defense equipment, low unit cost but high volume materials, and various services as 

well. The Hungarian acquisition system generally uses first price sealed bid auctions. In 

some areas of procurement, however, open bidding practices are also used. The 

developing acquisition policy is considering new forms and activities. 



B. RESEARCH QUESTIONS AND RESEARCH METHODS 

The primary research question for this thesis is as follows: 

How do profit maximizing suppliers choose their bids in a competitive environment? 

This thesis research examines the following secondary research questions: 

1. Does the FPSBA have a game equilibrium, and if it has, what are the 

equilibrium strategies of the bidders? 

2. Do the bidders have a dominant strategy in First Price Sealed Bid Auctions? 

3. How does the change in bidders' numbers affect the outcome of the FPSBA? 

4. How does the cost distribution affect the outcome of the FPSBA? 

5. How can HDF use the findings of this Thesis in their acquisition practice? 

C. SCOPE OF THE RESEARCH AND ORGANIZATION OF STUDY 

This thesis is limited to applying the FPSBA to those areas where the HDF has a 

limited number of responsive and responsible potential suppliers. The limitation also 

applies to the goods and services the HDF intends to acquire. The goods and services 

should be accurately specified and the HDF or the Acquisition Office must not deviate 

from these specifications. 

On the bases of conducted research, this thesis: 

1. Will review the contracting practice of the HDF to find those areas where the 

bidding for contract simulations can take place, 

2. Will review the theory of auctioning activity and the game theory providing the 

background for constructing a model of the FPSBA, 

3. Will develop a computer simulation to analyze the FPSBA and experiment with 

the model. 



4.   Will provide recommendations to use  computer  simulations  of FPSBA 

auctions in the HDF's contracting practice. 

The thesis has been organized in four chapters as follows. Chapter II surveys the 

development of auctioning theory. Considering competitive selling auctions, the chapter 

defines the bidding for contract game in normal-form, and the existence of a Bayesian 

Nash equilibrium in these games. The Chapter develops bidding functions for two and 

three bidders in the bidding for contract game. The bidding function is developed when the 

bidders' production costs are distributed uniformly, and for the case where the cost 

distribution follows a triangular distribution. 

Chapter III describes the experiments conducted with the constructed model. 

Computer simulation has been used as the basic experimentation tool. The chapter gives a 

summary of the settings and methodology in which the experiments were organized; the 

chapter also analyzes the results. 

Conclusions and recommendations are provided in Chapter IV. This chapter 

addresses each of the primary and secondary research questions posed in this chapter, and 

provides concluding remarks about the feasibility of HDF using computer simulations in 

acquisition practice. Additionally, it suggests areas for further research. 

D.       DEFINITIONS 

Auction - as used throughout this thesis, refers to 'a market institution with an 

explicit set of rules determining resource allocation and price on the basis of bidding from 

the market participants."[Ref. 4] 

Strategy ~ as used throughout this thesis, refers to the definition, given by 

von Neuman and Morgenstern, founders of the Game Theory 'a complete plan: a plan that 

specifies what choices [the player] will make in every possible situation."[Ref 5] 

Bidder ~ as the name implies, refers to a responsive and responsible prospective 

supplier, where: 



1. A responsive supplier implies the offeror has the ability to comply with the 

specifications, quantities to be delivered, and terms and conditions encountered 

in the contract, 

2. responsive supplier: 

a) has adequate financial resources to perform the contract or the ability to 

obtain such resources 

b) is able to comply with the contracted delivery schedule, 

c) has the necessary organization, experience, and technical skills. 

d) has the necessary production, construction or technical equipment and 

facility to perform the contract obligations, [Ref. 5] 

Buyer ~ as the name implies, refers to a government agency (the HDF in 

particular) soliciting a request for proposal to submit a bid for a specified contract. 

Bidding for contract game — as used throughout this thesis, refers to the 

definition of a single stage static game with incomplete information played by the bidders. 

The buyer is not actively involved in the game. 



H. BACKGROUND 

This Chapter will explore the basis of auctioning theory. The first part of the 

Chapter will analyze the games to which auctioning activity applies. The bounding of the 

game to a class limits the scope of the research. The second part of the Chapter will 

analyze bidding for contract games. The third part of this Chapter will summarize the 

basics of the order statistics, which will later be used to control the simulation outcome. 

After identifying the main characteristics of the static non-cooperative games of imperfect 

information, this Chapter will conclude with the normal-form representation and the 

equilibrium strategies of the bidding for contract games. 

Organized auctioning from which sealed bidding originates dates back to the 

ancient times. One of the earliest reports of an auction was given by Herodotus. He 

described the sale of women to be wives in Babylon around the fifth century BC In China, 

as early as the seventh century AD, the personal belongings of deceased Buddhist monks 

were sold at auction.1 

In modern times, auctioning practice distinguishes two major families of auctions. 

The first is selling auctions held to market goods and to sell them at the highest possible 

price. In other class of auctions, the buyer purchases goods or services from competing 

suppliers, represented by bidders. This thesis will call the later group 'bidding for 

contract" auctions. Using this terminology, we can distinguish the two types of actions. 

Game theory links these two auction types to the same class of games, called static non- 

cooperative games with imperfect and incomplete information. 

A.       THEORETICAL PERSPECTIVES OF THE FPSBA 

William Vickrey laid the foundation for auction theory in his remarkable 1961 

paper. [Ref. 3] Paul Milgrom and Robert Weber provided a general framework to analyze 

the competitive bidding process. [Ref. 8] McAfee and MacMillan gave a comprehensive 

1 These and other historical references can be found in Cassady [Ref. 7] 
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survey of auction theory in 1987. [Ref. 4] Several other authors have explored auctioning, 

mostly concentrating on the selling auctions. Charles Holt [Ref. 9] and William Samuelson 

[Ref. 10] developed the theory of competitive bidding for contracts. The literature 

describes four basic types of auction: the English auction (also called oral open or 

ascending auction); the Dutch auction (also called oral open descending auction); the first- 

price sealed-bid auction; and the second-price sealed-bid (or Vickrey) auction. 

The English auction is the most frequently used form for selling goods. The 

English auction prescribes that the price of the goods up for auctions is successively raised 

until only one bidder remains. The rising price can be announced by an auctioneer or the 

bidders themselves, or by having the bids submitted electronically with the current highest 

price posted. 

The Dutch auction is the reverse of the English auction. The auctioneer calls an 

initial price, high enough to be above the bid of any of the participants. Then the price is 

lowered until one bidder accepts the current price. From game theory point of view, the 

distinguishing feature of the English and Dutch auctions is that, the bidders always know 

the actual level of the highest bid. Both auctions are oral auctions. Although, these auction 

forms have their merits, they are not usually used in government contracting. 

In a first price sealed bid auction, the potential sellers (buyers) submit sealed bids 

simultaneously, and the lowest (highest) bidder is awarded the contract for the price bid. 

With the sealed bid auction, each bidder has only one opportunity to bid. The difference 

between the first-price sealed bid auction and the English auction is that the bidders at the 

sealed bid auction cannot observe the rival's bids; they cannot revise and alter their bids 

correspondingly.. 

In the second price sealed bid auction, the bidder submitting the lowest (highest) 

bid wins the auction, but the winner will get (will pay) the second lowest (highest) price. 

[Ref. 4] First-price sealed bid auctions are one of the basic tools for source selection in 

Government procurement, and in the HDF. The second-price sealed bid auction has useful 

theoretical properties but is rarely used in practice. 



Combinations of these basic auctioning forms have been used quite often, and 

additional rules are often imposed along with the basic auction rules. For example, a 

reservation price can be imposed, discarding all the bids if they are lower (higher) then the 

reservation price. The auctioneer may charge bidders an entry fee for the right to 

participate in the auction or the auctioneer may impose certain preferences on some of the 

bidders. An example of the late provision is a 10% price advantages for domestic bidders 

over the foreign bidders as stipulated by the Public Procurement Law of Hungry. [Ref. 2] 

B.        THEORY OF SEALED BID AUCTION GAMES 

This section will define the representation of the bidding for contract game, after 

studying non-cooperative games with incomplete information. Defining the equilibrium in 

non-cooperative games with incomplete information will provide the theoretical basis to 

determine the bidders' equilibrium strategies. The appearance of the equilibrium in the 

game will facilitate surveying the bidders' strategies in FPSBA. 

1.        Normal-Form Representation Of Non-Cooperative Games with 
Incomplete Information 

This thesis surveys non-cooperative games of incomplete information based on the 

study of R. Gibson [Ref. 12]. To develop a normal form representation of the static game 

with incomplete information, also called Bayesian games, we have to consider non- 

cooperative games of complete information. We can represent the normal form of an n 

player game with complete information, as follows: 

G={ Si,..., S„;ui,...,un} 

where: Si — player i's strategic space 
u; ~ player i's payoff function 

when the player selects strategy (si, S2,..., s„) 



Further assuming that the players move simultaneously, than the non-cooperative 

game of complete information for a player simply involves choosing an action from the 

rationally available action space, A. 

So, we can rewrite the normal-form of the game of complete information: 

G={ Ai,..., A„, Ui,...,U„} 

where: A; — player i's action space 
u; ~ player i's payoff function 

In the static non-cooperative game of complete information, the timing of moves is 

as follows: the players simultaneously choose an action from the feasible set of actions 

A (i.e. player i chooses action a;), and the payoff of u;(ai, a2, ...,a„)iS received. 

The first step in developing the normal-form representation of the non- 

cooperative game with incomplete information is denoting the idea that each player has 

private information about his or her payoff. The players, however, are uncertain about 

other players' payoff functions. Let player i's possible payoff function be represented as u; 

(ai, a2,..., &n, ti), where t; is called the player i's type, ti belongs to a set of possible types 

(type space). Each t; type corresponds to a different payoff function. J. Harsänyi 

[Ref. 12] first applied this notion for representing the payoff functions in games of 

incomplete information. 

Given this definition of players' types, if players know their payoff functions it is 

equivalent to players knowing their type. Likewise, saying that player i may be uncertain 

about the other players' payoff function is equivalent to stating that player i is uncertain 

about the other players' type, denoted ti(ti, ...,ti-i, ti+i,...,tn). T.; represents the set of all 

possible values of ti. 

Players have beliefs about the other players' types. We denote the probability 

distribution of player i's belief about the probability distribution of other players' type, 

given that player i is type t;, as pi(t.;lti). In our analysis the players' types (cost) are 

identical and independent. In this case, pi(t.; I ti) does not depend on ti, thus we can write 

10 



player i's belief as pi(t.;). There are contexts in which the other players' types are 

correlated; for simplicity we assume independence of the types. 

We can derive the normal form representation of the non-cooperative game with 

incomplete information by joining the normal form representation of the non-cooperative 

game with complete information and the concepts of type and distribution of beliefs. 

Definition [Ref. 12:pg. 148] the normal-form representation of an n-player non- 

cooperative game with incomplete information specifies the players' action space 

Ai, ... A, their type space Ti, ... ,T„, their beliefs pi, ...,pn, and their payoff functions 

ui, ... ,u„. Player i's type, privately known by player i, determines player i's payoff 

function u; (ai, a2,... a„, t;), and is a member of the set of possible types T_;. Player i's belief 

Pi(tilti) describes the uncertainty about the n-1 other players' possible types ti given i's 

type ti. We denote this game: 

G={Ai,...,An;T1,...,Tn;pi, ... p„;ui, ... ,u„} 

Following Harsänyi [Ref. 11], assume that the timing of the static Bayesian game 

is as follows: 

1. nature draws a type vector t; = (ti, ..., t„), where t; is drawn from the set of 

possible types Ti; 

2. nature reveals t; to player i but not to any other player; 

3. the players simultaneously choose actions; and player i chooses action a* from 

the feasible set A;; 

4. payoff u; (ai, a2,... a„, t;) is received. 

Introducing the fictional move by nature, in steps 1 and 2, produces a game with 

incomplete information that also satisfies the requirement for the games with imperfect 

information. Because nature only reveals player i's type to player i, but not to other 

players, the other players do not know the complete history of the game when taking their 

actions. This is a condition of the game with imperfect information. 

11 



Two technical assumptions complete our discussion about the normal-form 

representation of an n-player non-cooperative game with incomplete information. First, 

player i has private information about his type and also about the type of some other 

player(s). We cannot exclude this condition from the bidding for contract game explicitly. 

However, we can assume that the signal received about the other bidders' types is false, 

and that bidders do not consider this information in selecting their action. 

The second technical point involves beliefs about the other players, pi(ti 1ti). It is 

assumed the timing of the game is common knowledge, so is the prior distribution p(t) 

from which nature draws the type vector t = (ti, ..., t„). When nature reveals t; to player i, 

i can compute the belief p£(t-i 1t;) using Bayes' rule of conditional probability:2 

Pi(t.; I ti) = p(t.;, t;)/ p(t-i) = p(t.i, ti) /1 p(L;, ti) 

Furthermore, a player can compute the beliefs that the other players might hold. 

We assume that the type distribution is common knowledge in the bidding for contract 

game and takes the form of either a uniform or triangular probability distribution. 

2. Definition of Bayesian Nash Equilibrium 

To define the equilibrium in the static Bayesian game, we have to first define the 

strategic space of players. The players' strategy is a complete plan of action, specifying a 

worthwhile action in every circumstance in which the player might be engaged. In a static 

game with incomplete information, nature begins the game by drawing the players' type. 

Thus, a strategy for player i must specify a feasible action for each of players i's possible 

type. 

2 Bayes' rule provides a formula for the conditional probability P( Al B) that event A will occur given that event B 
has occurred [Ref. 13] 

12 



Definition [Ref. 12: pg. 150] In the static Bayesian game G = { Ai, ... , A,; Ti, 

... , T„ ; pi, ... , pn; ui, ... , un} a strategy for player i is a function Si(t;), where for each 

type t; in T;, s;(ti) specifies the action from the feasible set A; that i would choose if type t; 

is drawn by nature. 

In static Bayesian games, unlike games with complete information, the strategic 

space is not given in the normal-form representation of the game. In the games of 

incomplete information, the strategic space is constructed from the type and action space. 

Player i's set of possible strategies is the set of all possible functions with range A and 

domain TV 

It is seemingly unnecessary for the player i to specify actions for each of players i's 

possible type. Once nature has revealed a specific type to the player, that player should not 

be concern about the other possible types. However, in choosing a strategy, player i has to 

consider what the other player will do. What the other players will do largely depends on 

what they think player i will do if nature draws type ti from TV Therefore, player i should 

consider what to do if each of the other players' types is drawn from the type space Tj 

once a specific type is revealed to player i. 

The central idea of the Bayesian Nash game equilibrium is that each player's 

strategy must simultaneously be a best response to other players' strategy. This means that 

no player wants to change his or her strategy, even if the change involves only one action 

by one type. 

Definition [Ref. 12:pg. 151] In the static Bayesian game G = {Ai, ... , Ai; Ti, ... 

, Tn ; pi, ... , pn ; ui, ... , un} the strategies s* = (si*, .... s„*) are a Bayesian Nash 

equilibrium for each player i and for each type ti in Ti, if s;(ti) solves 

max 2 Ui(si*(ti), ... Si-i*(ti-i), a;, Si+i*(ti+1), ... , Sn*(t„); t)p;( U I ti) 

It is straight forward to say that in the static Bayesian game with n players, if both 

the possible action space (Ai, ... , A,) and type space (Ti, ... , Tn) are finite, there exists a 

Bayesian Nash equilibrium. 
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3.        Normal-form Representation of Bidding for Contract Game 

The FPSBA from game theoretic point of view is a non-cooperative game with 

incomplete information. These games are often called Bayesian games. In these games, at 

least one of the players' payoff function is uncertain. In the bidding for contract game, the 

player type is the expected cost; different expected costs for the bidder will provide 

different payoffs. In FPSBA, each bidder knows their cost (valuation of the object on sale) 

but does not know any other bidders' cost (valuation). Bids are submitted in sealed 

envelopes, so we can assume that the bidders act simultaneously. 

The normal-form representation of the bidding for contract game with two bidders 

competing for the contract is represented as: 

f bi-Ci, if bi<bj 

Ui(bi, bj, c;, Cj) = i l/2(bi-c0 if bi = bj 
lo f b;>bj 

When more than two players are competing for a contract the normal-form 

representation of the bidding for contract game is represented as: 

fbi-Ci, if bi = min(bl,...,bn) 
Ui(bi,...,bn, ci,...,cn) = '{ l/p(b;-Ci) if bi = bj 

I 0 if bi>min(bl,...,bn) 
i=l,2,...,n-l "■5**5 3* 

Assuming no more than p bidders submit the same bid. 

C.        ORDER STATISTICS: AN OVERVIEW 

This Section will survey the relevant order statistics theory using the guidelines 

provided in R. Hogg and A. Craig classic book of mathematical statistics [Ref. 13]. 

Theory of order statistics deals with the ranked values of a sample of random variables 

having drawn from a probability distribution. The ranking of the order statistics goes from 

the   smallest   to   largest.   Order   statistics   have   some   remarkable   characteristic. 
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For example: properties of the order statistics do not depend upon the distribution from 

which the random sample has been drawn. 

This thesis uses order statistics to analyze the outcome of the auctioning 

simulations. Bids and the bidders' production costs can be considered to be random 

variables drawn from a probability distribution. Ranking the submitted bids and the 

expected costs in ascending order we generates typical order statistics. 

Let Xi, X2, X3, ..., Xn denote a random sample from a continuos distribution, 

having probability density function of f(x) that is positive over the interval of 

a < x <b. Let Yi be the smallest of these X;, Y2 be the second smallest, ... , and Y„ be the 

largest. That is Yi < Y2 < Y3, ..., Yn represents Xi, X2, X3, ..., X„ when they are arranged 

in ascending order. It can be proven that the joint probability distribution of 

Yi<Y2<Y3, ...,Yn is given by 

g(yi, y2, ys,.... yn) = n!*[f(xO* f(x2)* f(x3)*,..., f(xn)] 

ifa<yi<y2<y3, ...,y„<b 

= 0 elsewhere 

The proof of this theorem is found in R. Hogg and A. Craig. [Ref. 13] The 

marginal probability density function represents the probability density function of one of 

the order statistics. This is given by 

gk(yk)   = n!/(n - k)! *[ FfrOr^l-Ffrk)]** * f(yk) for a < yk< b 

= 0 elsewhere 

The joint probability distribution function of the 1st and 2nd order statistics we can 

be used to calculate the expected differences between the sample members. Chapter III 

uses the computed results to control the simulation's outcomes. Examples of the 

calculations are given in Appendix B. 
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D.       BIDDING FUNCTIONS UNDER THE UND70RM COST DISTRIBUTION 

A continuos random variable X has a uniform distribution if its probability density 

function is given by: 

f(x) = l/(h-l) Kx<h 
=   0 elsewhere 

The cumulative distribution function of the uniform distribution is given by: 

f 0 x  < 1 
F(x) =  \ (x-l)/(h-l) Kx< h 

I 1 x >h 

Where: 1 < h and 
1  -  the lower limit of the distribution 
h -  the upper limit of the distribution 

1.        Bidding for Contract Games with Two Bidders 

Assume that two bidders are competing for a contract and the bidders' production 

cost c; has a uniform distribution over the range [0, 1]. Suppose Player j adopts the 

strategy b(-) and assume that b(-) is strictly increasing and differentiable. For a given value 

of Ci, player i's optimal bidding strategy solves 

max (bi - ci)* Prob{ bi < b(cj)} 

Let b^Cbj) denote the cost the bidder must have to bid bj. That is b_1(bj) = Cj if 

bj = b(cj). Since Cj is uniformly distributed on [0, 1], Prob{ bj < b(Cj)} = Prob {b"1 (b;) < Cj} 

= 1 - b"1 (bi). The first order condition for player i's optimization problem is therefor: 

d[(b; - cO* (1 - b_1 (bi))] / dbi = 0 

Computing the derivative yields: 

(1 - b"1 (bi)) + (b; - cO*[d (1 - b'1 (b;)) / dbi] = 0 

The first order condition is an implicit equation for bidder i's best response to the 

strategy b(-) played by bidder j, given that the i's bidder cost is c;. If the strategy b(-) is to 
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be a symmetric Nash equilibrium, we require that the solution of the first order condition 

be b(ci). That is, for each of bidder i's costs, the bidder does not want to deviate from the 

strategy b(-), given that bidder j plays this strategy. 

To impose this requirement, we substitute b; = b(cO into the first order condition, 

yielding: 

[1 - b^CKci))] + (b(ci) - Ci)*d [(1 - b"1 (b(ci))]/dbi = 0 

where: b'x(b(ci)) = Q and d[l - b"1 (b(ci))]/dbi = -1/ b'(ci) 

Thus, b(-) must satisfy the first order differential equation 

1 - Ci - (b(ci) - c;)* l/b'(c;) = 0 

l-Ci = (b(ci)-Ci)*l/b'(ci) 

b'(cO*( 1 - Ci) - b(ci) = - C; 

The left hand side of the equation can be rewritten as: 

b'(cO*(l - cO - b(ci) = d[(b(Ci)*( 1 - c0]/dci 

Integrating both sides of the equation yields: 

Jd[(b(Ci)*(l-Ci)]/dCi=-jcidCi 

b(c;)*( 1 - Ci) = - C;2/2 + k 

To define k , we have to use the boundary conditions. These are b(ci) >= C; 

particularly, if c; = 1, b(l) must be finite, and it is. Thus k = c;
2/2 and k = 1/2 . 

Substituting the value of k into the equation after integration we find the bidding 

function for i. 

b(c;)*(l - cO = (1 - c;2) 12 b(Ci) = (1 + Ci)/2 

In the same way, we can define the reaction function for j. It will take the form: 

b(Cj) = (l+Cj)/2 
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Under the assumption that the players' strategies are strictly increasing and 

differentiable, we have a linear and symmetric Nash equilibrium in the two players bidding 

game.3 

2.        Bidding For Contract Games With Three Bidders 

Assume that three bidders are competing for a contract and the bidders' 

production cost c; has a uniform distribution over the range of [0, 1]. Suppose Player j and 

k adopt the strategy b(-) and assume that b(-) is strictly increasing and differentiable. For a 

given value of c;, i's optimal bidding strategy solves: 

max(b; - Ci)* Prob{bi < b(cj) , b; < b(ck)} 

Let b"1 (bj) denote the cost the bidder must have in order to bid bj and b"1 (bk) 

denote the cost bidder must have to bid bk. That is b'^bj) = Cj if bj = b(Cj) and b"1^) = cfc 

if bk = b(Ck). 

Since Cj and ck is uniformly distributed on [0, 1], Prob(b; < b(Cj)) = 

= Prob(b-1 (bi) < cj) = 1 - b'1 (bj) and Prob(b; < b(ck)) = ProKb"1 (bi) < ck) = 1 - b"1 (b;). 

Therefor Prob(bi < b(cj), bi < b(ck)) = (1 - b"1 (bi))* (1 - b"1 (bj)) = [1 - b"1 (bi)]2. 

The first order condition for player i's optimization problem is given by: 

d[(bi - a)* (1 - b"1 (b;))2]/dbi = 0 

Computing the derivative yields: 

((1 - b"1 (bi))2 + (b; - cj)*2*((l - b"1 (bi))*d[(l - b"1 (bi)]/dbi = 0 

Implying the same assumption as in case of two bidders, we substitute bi = b(ci) 

into the first order condition, yielding: 

[1 - b-^ci))]2 + (b(ci) - c;)* 2*[1 - b"1(b(ci))]*d[l - b"1 (b(ci))]/dbi = 0 

where: b^CKci)) = c; and d[l - b"1 (b(ci))]/dbi = - l/b'(ci) 

3 A Nash equilibrium is called symmetric if the players' strategy are identical. That is, in a symmetric Nash 
equilibrium, there is a singe function b (cj) such that bidder 1 's strategy bi(ci) is b(ci) and bidder 2's strategy b2(c2) 
is b(c2), this singe strategy is the best response to itself. Of course, since bidders' costs will be different, their bid 
will be different even if both use the same strategy. [Ref. 12] 
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Thus, the b(-) must satisfy the following first order differential equation: 

(1 - Ci)2 - (b(ci) - c;)*2* (1 - Ci)*l/b'(ci) = 0 

We can express this equation more conveniently as: 

(1 - Ci)2 = (b(ci) - c;)*2* (1 - Ci)*l/ b'(cO 

b'(cO*(l-Ci)2 -2b(ci) =-2ci 

The left hand side of this equation can be rewritten as: 

b'(c;)*( 1 - Ci)2 - 2 b(ci) =1/(1- cO* d[(b(Ci)*(l - c02]/dci 

Integrating both sides of the equation, the right hand side by part 

d[(b(cO*(l - Ci)
2]/dCi= Ci*[- 2 *(1" Ci)] 

Jd [(b(Ci)*(l - Ci)2]/dci = |ci*[- 2 *( 1 - Ci)]dci 

b(Ci)*(l - c;)2= Ci*(l - cO2 -J(l - cO2 dci 

b(Ci)*(l - Ci)
2= Ci*(l - Ci)2 + [(1 - Ci)

3]/3 + k 

To eliminate k, we have to use the boundary conditions. That is, b(Ci) >= d; and 

particularly if c; = 1, b(l) must be finite, and it is. So, k = 0 

Substituting value of k into the above equation, we find the bidding function for i. 

b(ci) = c; + (1 - c;)/3 = [1 + 2*c;]/3 

b(cj) = (1 + 2CJ)/3       and     b(ck) = (1 + 2ck)/3 respectively. 

Under the assumption that the players' strategies are strictly increasing and 

differentiable, we derived a linear and symmetric Nash equilibrium in the three person 

bidding game. 
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E.        BIDDING FUNCTIONS UNDER THE TRIANGULAR COST 
DISTRIBUTION 

In general, a random variable X has a triangular distribution if its probability 

density function f(x) is given by 

( 2*(x - l)/(h - l)*(m -1) 
f(x) = i 2*(n - x)/(h - l)*(h - m) 

lo 

Kx<m 
m<x<h 
elsewhere 

Height = 2/(h -1) 

1 m h 

Figure 1 PDF of the triangular distribution 

The cumulative distribution function F(x) of the triangular distribution is given by 

f 0 x <1 
I (x - l)2/(h - l)*(m -1) 1 < x < m 

F(x)=  \ 1 - (h-x)2/(h- l)*(h- m) m<x<h 
I 1 x>h 

Where: 1 < m < h and 
1 - the lower limit of the distribution 
h - the upper limit of the distribution 
m - the mode of the distribution. 

1.        Bidding for Contract Games with Two Bidders 

Assume that two bidders are competing for a contract and the bidders' production 

cost c; has a triangular distribution over the range [0, 2] with mode value [1]. 

The assumed production cost has a triangular distribution with probability density 
function f(c) is given by: 
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f c 0 <c<l 
f(c) = i 2- c 1< c < 2 

[ 0 elsewhere 

The commulative distribution function F(c) of the production cost is given by: 

f 0 c <0 
I c2 0 < c < 1 

F(c) =  { 1 - (2 - c)2/ 2 1 < c < 2 
I 1 c >2 

The triangular distribution has a special characteristic, i.e. it has two distributions 

over the interval of [0, 2]. The dividing limit of the interval is the mode value of the 

distribution. 

Definition of the bidding function for cost interval [0,1] 

E(TI) = (b - c)*(l - F(c)) = (b - c)*(l - b2/2) 

The bidders' expected profit E(7t) is maximized if the dE(7u)/db = 0 

dE(7t)/db = (1 - b2/2) + (b - c)*(-b) = 0 

Computing the formula: 

1 - b2/2 - b2 + b*c = -3* b2/2 + b*c +1 = 0 

Applying the Quadratic Formula: 

b = (c + (c2 + 6)05)/3 

This is the bidding function for players over the interval [0, 1] of the triangular 

distribution 

Definition of the bidding function for cost interval [1,2] 

E(%) = (b - c)*(2 - b) 2/2 is the bidders' expected profit E(7t).The bidders' expected 

profit is maximized if dE(7r)/db = 0. 

dE(7t)/db = l/2*((2 - b)2 + 2*(b - c)* (2 - b)*(-l)) = 0 
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(2 - b)*(2 - b - 2*b + 2*c) = 0 

b = (2 + 2*c)/3 

This is the players' bidding function over interval [1, 2] of the triangular 

distribution. This Thesis will use the derived formulas to simulate the equilibrium strategy 

of the bidders with a triangular cost distribution. 

2.        Bidding for Contract Games with Three Bidders 

Assume that three bidders are competing for a contract and the bidders' 

production cost c; has a triangular distribution over the range [0, 2] with mode [1]. 

Definition of the bidding function for cost interval [0,1] 

E(%) = (b - c)*(l - F(c))2 = (b - c)*((l - b2/2))2 

The bidders' expected profit E(%), is maximized if dE(7u)/db = 0 

dE(7i)/db = ((1 - b2/2))2 + (b - c)*2*(l - b2/2)*(-b) = 0 

(1 - b2/2)*(l - b2/2 - 2* (b - c)) = 0 

Which is true if -5* b2/2 + 2*b*c+l =0 

Applying the Quadratic Formula: 

b = [2*c + (4*c2+10)a5]/5 

This is the players' bidding function for the interval [0, 1] of the triangular 

distribution 

Definition of the bidding function for cost interval [1, 2] 

E(TI) = (b - c)*[(2 - b) 2]2/2 = [(b - c)*(2 - b)4]/2 

The bidders' expected profit E(7t), is maximized if dE(7i)/db = 0 

d E(7i)/db = (2 - b)4 + 4*(b - c)* (2 - b)3*(-l) = 0 

(2 - b)3*(2 - b - 4*b + 4*c) = 0 

b = (2 + 4*c)/5 
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This is the bidding function for the players for the interval of [1, 2] of the 

triangular distribution. This Thesis will use the derived formulas to simulate the 

equilibrium strategy of the bidders with triangular cost distribution. 

F.        SUMMARY 

This Chapter has explored auctioning theory. In the first part of the Chapter, the 

class of the games to which auctioning activity belongs were analyzed and defined as non- 

cooperative games with incomplete information. The second part of this Chapter analyzed 

the bidding for contract game. The third part of this Chapter summarized the basics of 

order statistics, which will later be used to control the simulation outcome. The theoretical 

description of the game provided the opportunity to find the bidders' equilibrium 

strategies. 

This thesis assumes that all the bidding firms are equally efficient; their cost 

distributions are identical. Further it is assumed, that the bidders' costs distribution is 

either uniform or triangular over an interval of [1, h]. The distribution is known to all 

bidders. These assumptions were used to define the equilibrium bidding function. After 

defining the normal-form representation of the bidding for contract game, this Chapter 

derived the equilibrium bidding function for the those games that analyzed here. The 

bidders are expected to submit bids that maximize their profit; these bids form a Bayesian 

Nash equilibrium. 

23 



24 



m. SIMULATION OF THE FPSBA 

This Chapter verifies the results derived in the previous Chapters using computer 

simulations. The first section of the Chapter characterizes the model used to simulate the 

FPSBA processes The second part of the Chapter summarizes the simulation results and 

the insights gained from simulating the bidding for contract games. The first simulations 

assume that the production cost has a uniform distribution; the second simulations assume 

that the production cost satisfies a triangular distribution. In concluding, the Chapter 

summarizes the FPSBA simulation findings. 

A.       THE FPSBA MODEL 

This section of the thesis will develop a FPSBA model for simulating the bidding 

for contract game. After analyzing bidder behavior and using the findings from Chapter II, 

this section provides a mathematical model of FPSBA. The mathematical model will be 

transformed into computer code to conduct the simulations. 

1.        Simulation of Processes in FPSBA 

Simulation imitates real-world phenomenon, processes or systems. Simulation 

generates an artificial history of a system, and observes that artificial history to make 

judgments concerning the operating characteristics of the real-world system. 

A model is defined as a representation of a system for the purposes of studying 
the system. For most studies, it is not necessary to consider all the details of a system; 
thus a model is not only a substitute for the system, it is also a simplification of the 
system. On the other hand the model should be sufficiently detailed to permit valid 
conclusions to be drawn about the real system. [Ref. 14] 

By developing a simulation model we can study the processes and behavior of the 

system, and its changes over time. To model a system it is necessary to understand the 

system's concepts and boundaries. A system is often affected by the environment in which 

the system is operating. These variables are considered to be the system environment. 
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Models can be classified as being mathematical or physical. A mathematical model 

uses symbolic notation and mathematical equations to simulate a system. Mathematical 

models can be classified as deterministic or stochastic simulation models. A stochastic 

model uses one or more random variables as inputs. These random inputs generate 

random outputs. Since the outputs of the model are random, stochastic models can imitate 

the real system. However, the simulation results must be treated as a statistical estimate of 

the real-world system's characteristics. 

In the case of FPSBA the model represents the bidders and auctioneers. It 

includes the rules and regulations of the auctions, the bidders' behavior, and their 

attitudes. The actual and expected market conditions, the availability of resources and 

other factors are also an influential part of the FPSBA system. The elaborated FPSBA 

system model incorporates some of these variables. However, to keep the model 

manageable, a number of simplifications have been made. 

2.        Information Space of the Game and Strategic Behavior of the Bidder 

This section will analyze one of the most important aspects of the model, the 

bidders' and the buyer's characteristics. The bidding environment will be analyzed as well. 

Because of the wide variety in bidding regulations, this thesis assumes regulations are met 

both by the bidders and the buyer. Both parties comply with the applicable law at the time 

of the auction. 

a. Information Space of the Auction 

We assume that the FPSBA is a non-cooperative game in which the players 

have limited information. However, the players know the following: 

1. The buyer is fully committed not to deviate from the FPSBA rules during the 

auction process, even if the deviation is in the buyer's interest. The rules of the 

auctions are common knowledge. 
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2. The bidders' utility function is defined by a von Neuman — Morgenstein utility 

function U(-), and it is common for all bidders. 

3. The bidders know their production cost (ci) with certainty when they bid and 

this cost is private information known only to the bidder. However, the bidders 

have subjective assumptions about the range and distribution of production 

costs for other bidders. This Thesis assumes that the probability distribution for 

each bidder is the same; it follows either a uniform or a triangular probability 

distribution over the production cost range. 

4. The bidders know with certainty the number of participants submitting bids. 

5. While preparing for auctions, the bidders send signals, sometimes misleading, 

about their cost to other bidders. However, cooperation between the bidders is 

restricted. 

b. The Players' Strategic Behavior 

A number of assumptions about the bidders will be made to construct a 

comprehensive FPSBA model. The buyer and the bidder are expected to act rationally. 

The rationality of the bidders means that: 

1. The bidders pursue their own self interest; they attempt to maximize their 

profit from the auction. Bidders maximize profits by submitting the highest 

possible bid. However, the bidders recognize that they are constrained by the 

other participants' bids. The higher the bid, the lower the probability of 

winning the auction. This self-regulating mechanism provides an efficient 

solution for the game. 

2. Bidders consider their production costs and the production costs of the other 

bidders. The resulting bids form a Bayesian Nash equilibrium. Bidders using 

the equilibrium strategy simultaneously maximize the expected profit regarding 

both their and other participants' expected bids. 
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3. The buyer and the bidders are risk neutral. The risk neutrality assumption is 

disputable. This thesis assumes risk neutrality to simplify the model 

formulation, the calculations and the description of the bidders' strategic 

behavior. 

3. Model Description 

Consider a competitive bidding model in which the buyer announces a contract to 

procure a specified commodity. This Thesis assumes that there are n bidders for a 

particular procurement and they are responsive and responsible. It is assumed that bids are 

solicited and the contract awarded to the lowest bidder; the bids differ only in price. The 

contract specifies the winning firm's total receipts from the buyer. The winner's expected 

profit depends both on the bid submitted and the cost incurred. In turn, the bids are 

influenced by the firm's expectation about the competing bids. 

The constructed model attempts to capture the major and decisive characteristics 

of the real FPSBA process. However, this model is only a first approximation of many 

procurement procedures. The model provides an opportunity to experiment with the 

bidders' possible actions and decisions during FPSBA. The proposed FPSBA model 

assumes symmetry of information and preferences, which makes it possible to concentrate 

exclusively on a symmetric Bayesian Nash equilibrium. 

4. The Computer Simulation Methodology 

This thesis used a personal computer and Excel 5.0 spreadsheet software to 

simulate the FPSBA process. The computer simulation flowchart is in Figure 2. A 

computer program was written to conduct the necessary operations to simulate the 

process. The simulation results were collected in a separate worksheet. The composed 

computer program had to be adjusted during the simulation to get the desired number of 

auctions. 
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Figure 2 The computer simulation flowchart 

The bidder's initial production cost, which was a random variable during the entire 

simulation process, was generated by Excel's built-in random number generator. The built 
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in random number generator provides a random number distributed uniformly over the 

interval [0 , 1]. If it was necessary, the generated random number was transformed using 

the Inverse Transformation Technique. [Ref. 14:pg. 299] 

B.        EXPERIMENTATION UNDER A UNIFORM COST DISTRIBUTION 

This section of the Chapter describes the FPSBA simulation when the production 

costs are distributed according to the uniform distribution. The first part of the section 

explains the mathematical simulation model; the later part presents the simulation results. 

1.        The Mathematical Model for Simulation 

Consider a situation where all firms are equally efficient and their cost distributions 

are identical. In particular, assume that the bidders' potential production costs are 

distributed uniformly over an interval [h, 1]. 

For this case: 

- the probability density function of cost is f(c) = l/(h -1) 

- the probability distribution function of cost is F(c) = (c - a)/(h -1) 

Where: h - upper limit of the cost range 
1 - lower limit of the cost range 

Determining the equilibrium strategies requires simultaneously analyzing all the 

bidding decisions. The model incorporates Chapter IPs findings about the bidders' 

equilibrium strategy. 

A bidding strategy defines the relationship between the bidder's proposal, b;, and 

cost Cj. Appendix A derives the bidding functions for the simulated game. The bidding 

functions take the general form: 

bi = ((h-l) + (n-l)*Ci)/n 

With two bidders, the bidding function takes the form: 
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bi = (1 + Ci)/2 and b2 = (1 + c2)/2 

for Bidder 1 and Bidder 2, respectively. 

With three bidders, the bidding function takes the form: 

tu = (1 + 2*Ci)/3        and     b2 = (1 + 2*c2)/3        and     b3 = (1 + 2*c3)/3 

for Bidder 1, Bidder 2 and Bidder 3, respectively. 

These formulas mathematically articulate the bidders' behavior. They reflect the 

bidders' expected bidding decision described in the previous section. This thesis assumes 

that the bidder's production cost was drawn from the stated distribution. The bidders' cost 

was simulated with a random number generator. 

2. Random Number Generation 

This thesis applied the Built-in Random Number Generator of the Excel 5.0 

spreadsheet software to generate uniformly distributed random numbers over the required 

interval. The built-in random number generator provides with random number over the 

interval [0, 1]. The simulations often use different cost distribution intervals. Therefor, the 

generated random numbers were transformed as necessary. 

The required random number transformation was based on: 

R = (h - l)*Rand() +1 

Where: R        - required random number 
1 - lower limit of the required random number 
h - upper limit of the required random number 
Rand() - the Excel generated random number 

3. Experimental Setting for FPSBA with Two Bidders 

This section assumes that two bidders are bidding for a contract, and the lowest 

bid wins. The bidder's production cost is distributed between [0, 1] according to the 

uniform distribution. The generated cost numbers are analyzed. This Thesis used the Excel 
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built-in statistical analyses program package to examine the quality of random numbers 

used during the simulations. The analysis result are shown in Appendix E. 

During the simulation, three different scenarios were assumed and analyzed. In the 

first scenario, both bidders used equilibrium strategies. In the second scenario, one of the 

bidders used the equilibrium strategy while the other bidder used non-equilibrium strategy. 

In the third scenario, both of the bidders used a non-equilibrium strategy. 

The different scenarios were designed to illustrate the theoretical finding that the 

equilibrium bidding strategy of the bidders is a strategy that maximizes the bidders' payoff. 

Any deviation from the equilibrium strategy would reduce expected profit for the 

deviating bidder. The numerical simulation results are shown in the Appendix C. 

a.        Graphic Presentation of the Computer Simulations Results 

The simulation was used to find an equilibrium in the bidding for contract 

game. The bidders' average expected profit can demonstrate the presence of an 

equilibrium strategy. If the bidders achieve equal average profit in a series of auctions 

conducted under the same conditions, this outcome represents the equilibrium of the 

game. Simulation results are shown in Figure 3. 
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Figure 3 Expected profit from winning the auction 
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Figure 3 shows there exits a well-defined equilibrium in these games. The 

winning bidders' expected profit if they win the auction approaches 0.334 as the number 

of simulated auctions approaches 1500. The simulation showed that the bidders won 

equally, and their expected profit approached to the analytical computed result 0.3333. 

The computation is shown in Appendix B. 

The average profit per auction considers all auctions in which the bidder 

participates. It better characterizes the bidders' expectations and their motivations. The 

bidder seeks to maximize the average profit per auctions not the profit per auction won. In 

the following simulations, this Thesis used the average profit from bidding to analyze the 

outcomes of the different bidding strategies. The average expected profit graph, shown on 

Figure 4, reinforces the existence of a well-defined equilibrium in these games. The 

bidders' average profit approaches 0.167 as the number of simulated auctions approaches 

1500. 
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Figure 4. Average profit from bidding — both bidders using equilibrium strategy 

An equilibrium strategy should also simultaneously maximize both bidders' 

profits. If a strategy maximizes the bidders' payoff, no-bidder is willing to deviate from the 

33 



strategy. This is an equilibrium of the game. This equilibrium condition was explored in 

the next simulation. The simulation results are shown in Figure 5. 

In this simulation, one of the bidders — Bidder 1 — used a non-equilibrium 

strategy. This simulation assumed that Bidder l's bid was 0.1 higher than the non- 

equilibrium strategy. The bidding function for the bidder was 

bi = [(l+Ci)/2] + 0.1 
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Figure 5 Average profit from the bidding — bidder 1 using non- equilibrium 
strategy 

The simulation revealed that the deviant bidder's profit was lower than the 

profit using the equilibrium strategy. The bidder playing the equilibrium strategy — Bidder 

2 ~ received higher profits in this game compared to the game in which both players used 

the equilibrium strategy. To control the simulation result, an other simulation was 

conducted with different non-equilibrium strategy. 

In this case, Bidder 2 used a non-equilibrium strategy described with 

bidding function: 

b2 = [(l+c2)/2]-0.1 

Simulation results are shown in Figure 6. 
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Figure 6 Average profit from the bidding — Bidder 2 using a non - equilibrium 
strategy 

The simulation revealed that the deviant bidder's profit was lower after 

deviating from the equilibrium strategy. However, in this situation the equilibrium strategy 

bidder did not achieve higher profit. The deviant low" bids made Bidder 2 win more 

often than Bidder 1. This reduced the profits for both of the bidders, even if Bidder 1 

played the equilibrium strategy. 

To further support the existence of an equilibrium strategy, the next 

scenario assumed both bidders deviated from their equilibrium strategy. The simulation 

was used to ascertain if either could achieve a higher average payoff in this case. This 

simulation assumed that the deviation from equilibrium is random, as opposed to the 

previous two cases when the deviant bidder used systematic non-equilibrium strategies. 

The bidding function is given by: 

bi = (1 + c;)/2 (+ or - Mi) 

Where: M; - Random number between [0, 0.5] for Bidder 1 and [0, 0.3] 

for Bidder 2 
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The addition or subtraction of the random number depended on the value 

of random number M;. If Mi was less than 0.3 for Bidder 1, and it was less than 0.1 for 

Bidder 2, than Mi was added otherwise it was subtracted from the equilibrium bid. 

Simulation results are shown in Figure 7. 
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Figure 7 Average profit from bidding — both of the bidders using a non- 
equilibrium strategy 

This simulation shows that the average profit curves do not follow any 

defined pattern, though they intersect at one point. Figure 7 also demonstrates that both of 

the bidders had lower payoffs in this case compare to the two previous simulations. 

b. Summary 

After analyzing the results of the two-bidder computer simulation, it can be 

claimed that: 

1. The simulation of the bidding for contract game is valid. The computation 

completed in Appendix B shows 0.3333 as an expected difference between the 

lowest and the highest costs. The expected difference between the highest and 

the lowest cost is the winner's profit. The simulation found 0.334 as the 
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winners' average profit after 1500 simulated auctions. Further simulations 

would approach the theoretical results, computation is shown in Appendix B. 

2. The average profit per auction better characterizes the bidders' expectations 

and their motivations. The bidder seeks to maximize the average profit per 

auctions not the profit per auction won. The average expected profit graph, 

shown on Figure 4, reinforces the existence of a well-defined equilibrium in 

these games. The bidders' average profit approaches 0.167 as the number of 

simulated auctions approaches 1500. 

3. The equilibrium strategy maximizes the bidders' expected average profit; 

deviations from the equilibrium strategy cause an expected loss for the deviant 

bidder. 

4. If the deviation from the equilibrium strategy is negative, i.e., bids are below 

the equilibrium bid, both of the bidders have lower expected profits. 

5. If the bidder follows equilibrium strategy, and its opponent deviates from 

equilibrium strategy in a positive direction, the equilibrium strategy bidder's 

expected profit will be higher on average. 

The change in number of competing bidders has a significant impact on the 

outcomes of the bidding for contract game. The following section of this Chapter will 

analyze this effect. 

4. Experimental Setting for FPSBA with Three Bidders 

This simulation was conducted to find the effect on the game equilibrium of 

changing the number of bidders. The simulation assumed that three participants were 

bidding for a contract; the lowest bid wins. The bidders' production costs are distributed 

between [0, 1], according to the uniform distribution. 

During the simulation, three different scenarios were analyzed, as in two-bidder 

simulation case. In the first scenario, all the bidders used the equilibrium strategy. In the 
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second scenario, two bidders used the equilibrium strategy while the other bidder used a 

non-equilibrium strategy. In the third scenario all the bidders used non-equilibrium 

strategies. 

The scenarios were designed to support the theoretical finding that the bidders' 

equilibrium strategy is dominant. In other words, the equilibrium strategy maximizes the 

payoff to all the bidders. Deviating from the equilibrium strategy reduces the payoff for the 

deviating bidder. The numerical simulation results are shown in Appendix C. 

a.        Graphic Presentation of the Computer Simulation Results 

Figure 8 shows there is a well-defined equilibrium in the three person 

equilibrium strategy game, as in the two-player game. Figure 8 indicates that the winning 

bidders' average profit approaches 0.25 as the number of auctions approaches 2500. 
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Figure 8 Expected profit from winning the auction 

The simulation indicates that increasing the number of bidders requires 

mores auctions to converge to the equilibrium average profit. Introducing an additional 

competitor decreased the average expected profit from 0.333 with two bidders to 0.25. 
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The average profit per auction considers all auctions in which the bidder 

participates. It is a better characteristics for the bidders expectations and their motivations. 

The bidder seeks to maximize the average profit per auctions not the profit per auction 

won. The average expected profit graph is shown in Figure 9. 

The average expected profit graph reinforces the existence of a well- 

defined equilibrium in these games. The bidders' average profit approaches 0.835 as the 

number of simulated auctions approaches 2500. 
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Figure 9 Average profit from bidding ~ all of the bidders used equilibrium strategy 

An equilibrium strategy should also simultaneously maximize all bidders' 

profits. If a strategy maximizes the bidders' payoff, no-bidder is willing to deviate from the 

strategy. This is an equilibrium of the game. This equilibrium condition was explored in 

the next simulations. 

In these simulations, one of the bidders — Bidder 3 — used a non- 

equilibrium strategy. First, Bidder 3's bids 0.2 more than the equilibrium strategy. The 

bidding function was: 

b3 = [(l+2*c3)/3] + 0.2 
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Simulation results are shown in Figure 10. 
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Figure 10 Average profit from bidding ~ Bidder 3 using non-equilibrium strategy 

Simulation of bidding -with one non-equilibrium bidder reveals that: 

1. the bidders playing the equilibrium strategy (Bidder 1 and Bidder 2) can 

achieve a higher average payoff compare to the game where all the players 

used the equilibrium strategy. 

2. the non-equilibrium player receives a lower average profit than under the 

equilibrium strategy. 

To verify the simulation result, a second simulation was conducted with a 

different non-equilibrium strategy. In this case Bidder 3 used strategy described by bidding 

function: 

b3 = [(l+2*c3)/3]-0.15 

Simulation results are shown in Figure 11. 
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Figure 11 Average profit from bidding, Bidder 3 using a non-equilibrium strategy 

The simulation revealed that the deviant bidder's profit was lower in this 

case compare to the equilibrium strategy. However, the competing bidders in this situation 

did not achieve higher profits. With the deviant low" bids, Bidder 3 won more often than 

Bidder 1 and Bidder 2; Bidder 3's lower bid and more frequent winning lowered the 

profits for all bidders, even the equilibrium strategy bidders. 

To further support the existence of an equilibrium strategy, the next 

scenario assumed all bidders deviate from their equilibrium strategy. The simulation was 

used to ascertain if any bidders could achieve higher average payoff in this case. This 

simulation assumed a random deviation from the equilibrium. The bidding function for all 

bidders is: 

b; = (1 + 2*Ci)/( 3 + 0.6*Rand())       i = 1, 2, 3 

Simulation results are shown in Figure 12. This simulation shows that the 

average profit curves follow a defined pattern. The random but symmetric bidding strategy 

generated this outcome. 
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Figure 12 Average profit from bidding -all bidders using non-equilibrium strategy 

If the bidders followed a non-symmetric random deviation from their 

equilibrium strategy, the expected average profit curve not have a consistent pattern. 

Figure 12 also demonstrates that all bidders had lower payoffs in this case compared to the 

equilibrium strategy simulation. 

b.        Summary 

After analyzing the results of the three-bidder computer simulation, it can 

be asserted that: 

1. The simulation showed an average payoff of winning approaches 0.25 after 

2000 simulated auctions. This result confirms the theoretical prediction that 

number of bidders in the bidding for contract games is one of the decisive 

elements. The higher the number of the bidders, the lower the bidders' 

expected profit. The theoretical calculation of average expected profit in the 

three-bidder game is shown in Appendix B. The computed value of the first 

and second lowest costs differences gives the auction winner's expected 

average profit . The simulated expected profit was 0.2507; further simulations 
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would approach the theoretical result. The average expected profit graph 

reinforces the existence of a well-defined equilibrium in these games. The 

bidders' average profit approaches 0.0835 as the number of simulated auctions 

approaches 2500. 

2. The equilibrium strategy maximizes the bidders' expected average profit; 

deviations from the equilibrium strategy cause an expected loss for the deviant 

bidder, as in two-bidder simulation. 

3. If the deviation in bidding is negative, i.e. bids are below the equilibrium 

strategy, then all bidders had lower expected payoffs. If one bidder deviates 

from equilibrium strategy in positive direction, than the expected profit of the 

equilibrium strategy will be higher on average. 

5.        End Result of the Simulations with Uniform Distribution 

After analyzing the computer simulations for the uniform cost distribution, it can 

be observed that: 

1. The conducted simulations validate the constructed FPSBA model. The 

simulation results approached the theoretical results indicated by the order 

statistics computed for the two and three bidders cases. The simulation results 

converge to the theoretical results if sufficient auctions are simulated. 

2. The equilibrium strategy maximizes the bidders' expected average profit; 

deviating from the equilibrium strategy reduces profits for the deviant bidder. 

The non-equilibrium strategy reduces average profits for all the bidders if the 

deviation is below the equilibrium bid. 

3. Adding a new competitor to the game does not change the nature of the game; 

the additional competitor lowers the expected bid and the average expected 

profit. 
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C.        EXPERIMENTATION UNDER A TRIANGULAR COST DISTRIBUTION 

The FPSBA simulation using a triangular production cost distribution defines the 

bidders' behavior under a different cost condition. The uniform production cost 

distribution was used primarily for simplicity, though it is reasonable when there is no ex- 

ante information about the bidders' production costs. The triangular distribution may be a 

better approximation of reality. By manipulating the triangular distribution's mean value, 

average deviation, and minimum and maximum values, one can obtain a first order 

approximation of the bidders' production cost distribution. 

1.        The Mathematical Model for Simulation 

Consider a situation where all firms are equally efficient and their probability 

distributions of cost are identical. In particular, assume bidders' costs are distributed 

according to the same triangular probability distribution. The range of their production 

cost is defined over the interval [1, h]; it has a mode value m with probability 2/(h - 1). For 

the general case, suppose that the bidders' costs have been distributed according to 

triangular distribution with parameters: 

1. Probability density function: 

f 2*(c - l)/(h - l)*(m -1) 1 < c < m 
f(c) = { 2*(h - c)/(h - l)*(h - m) m < c < h 

[ 0 elsewhere 

2. The cumulative distribution function: 

f 0 c<l 
I  (c-1)2/(h-l)*(m-1) Kc<m 

F(c) = { 1- (h - c)2 /(h - l)*(h - m) m < c < h 
I 1 Oh 

where: 1 - lower limit of the bidders' cost distribution 
h - upper limit of the bidders' cost distribution 
m - the mode of the distribution (in extreme 1 = m or h = m 
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A bidding strategy defines the a relationship between the bidder's proposal, b; and 

cost Q. The equilibrium bidding functions with a triangular distribution takes the general 

form: 

1. For the production cost interval 1 < c < m 

n*l + (n - l)*c + {(n*l + (n - l)*c)2 + 2*[((n -1) + 0.5)* (Kl -12 - 2*( n-l)*c*l)]}05 

b =  
2*[(n-l) + 0.5] 

Where: Kl = (h - l)*(m -1) 

2. For the production cost interval of 1 < c < m 

h + 2*(n-l)*c 
b =   

2*(n -1)4-1 

The derivation of the general bidding function can be found in Appendix A. 

In deriving the bidding functions for the computer simulation, it was assumed that: 

1 = 0, h = 2 , m = 1, the simulation assumed that there was either two or three 

competitors. Substituting these assumptions into the general equilibrium bidding function 

yields: 

1. Two participant equilibrium bidding strategy: 

Ci4(Ci
24 6)0-5 

b; =  if 0    <    Ci   <    1 
3 

2 +   2*c; 
bj=   if 1 < c; < 2 

3 
2. Three participant equilibrium bidding strategy: 

2c; 4 (4*c;2 4 10)0-5 

bi =  if        0 < Q < 1 
5 

2 4-  4*Ci 
bj=   if 1   < Ci < 2 

5 
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2. Random Number Generation 

The Excel 5.0 built in random number generator provides random numbers. The 

random numbers are uniformly distributed over the interval [0, 1]. The following 

simulations need random numbers distributed according to a triangular distribution. 

Uniformly distributed random numbers can be converted to a triangular distribution using 

inverse transformation technique. [Ref. 14: pg. 300] 

According to this method: 

c = 1 + (R*(m - l)*(h -1))05 for  1 < c < m and 

c = h - (R*(h - m)*(h -1))05 for  m < c < h 

where: c - triangularly distributed random variables 

R - uniformly distributed random number generated by Excel 5.0 

The generated cost numbers were analyzed. This Thesis used the Excel built-in 

statistical analyses program package to examine the quality of random numbers used 

during the simulations. The analytical result are shown in Appendix E. 

3. Setting for the Computer Simulation of FPSBA of Two Bidders 

Computer simulation of the FPSBA was conducted using an Excel spreadsheet. 

This setting assumes two competing bidders; the lowest bid wins. The bidders' production 

cost is distributed between [0, 2] according to the triangular distribution 

with mode value [1]. The constructed computer program, written as an adjustable macro 

in Visual Basic language, followed the mathematical model of the bidding for contract 

game. The applied macro is shown in Appendix D. The macro devised bids for each 

participant and collected the auction results in a separate worksheet. 

During the simulation, three different scenarios were analyzed. In the first scenario, 

both bidders used the equilibrium strategy. The second scenario assumed that one of the 

bidders used an equilibrium strategy, while the other used a non-equilibrium strategy. In 

the third scenario both of the bidders used non-equilibrium strategies. 
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The different scenarios show the that the equilibrium bidding strategy is a 

dominant strategy. In other words, the equilibrium strategy yields the maximum payoff for 

both of the bidders. Any deviation from the equilibrium strategy reduces profit for the 

deviant bidder. The numerical simulation results are shown in Appendix C. 

a. Graphic Presentation of the Computer Simulation Results 

The simulation was used to find an equilibrium in the bidding for contract 

game. The bidders' average expected profit demonstrates the presence of an equilibrium 

strategy. An equilibrium of the game occurs when the bidders achieve equal average 

profits in a series of auctions conducted under the same conditions. 

Figure 13 shows there exits a well-defined equilibrium in these games. The 

bidders' average profit approaches 0.196 as the number of simulated auctions approaches 

1500. 
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Figure 13 Average profit from bidding ~ bidders used equilibrium strategy 

An equilibrium strategy should also maximize both bidders' profits. If a 

strategy maximizes the bidders' payoff, no-bidder is willing to deviate from the strategy. 
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This is an equilibrium of the game. This equilibrium condition was explored in the 

following simulations. In this simulation, one of the bidders used a non-equilibrium 

strategy. In particular, the bid was 0.25 above the equilibrium strategy. In particular, the 

Bidder l's bidding function is given by: 

bi = 
Ci + (ci2 + 6)' 0.5 

0.25 if 0 < c; < 1 

2 +   2*ci 
bj =   + 0.25 

3 
if 1 < Ci < 2 

The simulation revealed that the deviant bidder's average profit was lower 

compared to the equilibrium strategy. The bidder playing the equilibrium strategy ~ 

Bidder2 — received a higher profit in this game compared to the case where both players 

used the equilibrium strategy. Simulation results are shown in Figure 14. 
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Figure 14 Average profit from bidding ~ Bidder 1 used non-equilibrium strategy 

To reinforce this simulation result, another simulation was conducted with 

a different non-equilibrium strategy. 
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In this case, Bidder 1 used non-equilibrium strategy described with bidding 

function: 

Ci + (c,2 + 6)0-5 

bi =  0.25 
3 

2 +   2ci 
bi = 0.25 

if 0 < d < 1 

if 1   < c; < 2 

This scenario assumes that Bidder 1 bids below the equilibrium bid. As a 

result, Bidder 1 will win more contract, but earn a lower expected profit from the 

contract. Simulation results are shown in Figure 15. 
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Figure 15 Average profit from bidding - Bidder 1 used non-equilibrium strategy 

The  simulation revealed that the  deviant bidder's profit was lower 

compared to the equilibrium strategy. In this situation, the equilibrium strategy bidder also 

received a lower profit compared to the case where both of the bidders used the 

equilibrium bidding strategy. The deviant 'low" bids allowed Bidder 1 to win more 

contracts, reducing the equilibrium bidder's expected profit. 
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To further verify the equilibrium strategy, the next scenario assumes both 

bidders deviate from the equilibrium strategy. The simulation was used to ascertain if 

either participant could achieve a higher average payoff in this case. This simulation 

assumed that the deviation from equilibrium is random. The bidding function is: 

Ci + (Cl
2 + 6)° ^0.5 

bl = 

bi = 

3+R 

2 +  2ci 

if 

if 

0 < c; < 1 

1 < c; < 2 
3+R 

Where: R ~ is a uniform random number generated by Excel's built-in random 
number generator. 

This scenario assumed that both of the Bidders sometimes reduce their 

equilibrium bid to win the contract. The bidders sacrificed average profit per contract to 

increase the probability of winning. Simulation results are shown in Figure 16. 
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Figure 16 Average profit from bidding ~ Bidders used non-equilibrium strategy 

This simulation shows that the average profit curves do not follow any 

defined pattern. Though the average profit curves intersect, the non-equilibrium strategy 
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does not provide a defined average cost pattern. Figure 16 also demonstrates that both of 

the bidders had lower payoffs in this case compared to the two previous simulations. 

b.        Summary 

After analyzing the results of the two-bidder computer simulation, it can be 

observed that: 

1. The change in the production cost probability distribution does not 

substantially change the general results of the FPSBA. However, it does affect 

the specific values of the bids and the bidders' expected average profit. To 

better approximate the difference between the expected average profits, a two 

bidders simulation with a uniform distribution over the range [0, 2] was 

conducted. The expected average payoff of the bidders was 0.334, which is 

80% higher than 0.196 ~ the expected average profit with a triangular 

distribution over the same range. 

2. The equilibrium strategy maximizes the bidders' expected average profit; 

deviations from the equilibrium strategy cause an expected loss for the deviant 

bidder. 

3. If the deviant bid is below the equilibrium strategy, then both of the bidders 

had lower expected payoffs. If the deviant bid is above the equilibrium strategy 

then expected profit is higher for the equilibrium strategy bidder. 

4. Experimental Setting FPSBA with Three Bidders 

This simulation was conducted to find the effect of changing the number of bidders 

on the game equilibrium. The simulation assumes that three participants bid for a contract; 

the lowest bid wins. The bidders' production costs are assumed to be distributed 

according to a triangular distribution between [0, 2], with mode value [1]. 
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During the simulation, three different scenarios were analyzed as in two bidder 

simulation. In the first scenario, all the bidders used the equilibrium strategy. In the second 

scenario, two bidders used the equilibrium strategy while one bidder used a non- 

equilibrium strategy. In the third scenario, all the bidders used a non-equilibrium strategy. 

The scenarios were designed to support the theoretical finding that the bidders' 

equilibrium strategy is dominant. In other words, the equilibrium strategy maximizes the 

payoff to all the bidders. Deviating from the equilibrium strategy reduces the payoff for the 

deviating bidder. The numerical simulation results are shown in Appendix C. 

a.        Graphic Presentation of the Computer Simulation Results 

The simulation was used to find an equilibrium in the bidding for contract 

game. The bidders' average expected profit demonstrates the presence of an equilibrium 

strategy. If the bidders achieve equal average profit in a series of auctions conducted 

under the same conditions, this outcome represents the equilibrium of the game. 

Figure 17 shows that there exits a well-defined equilibrium in these games. 

The bidders' average profit approaches 0.105 as the number of simulated auctions 

approaches 1500. 
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Figure 17 Average profit from bidding — Bidders using equilibrium strategy 
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In next simulation, one of the bidders ~ Bidder 3 ~ used a non-equilibrium 

strategy. This simulation assumed that Bidder 3's bid was 0.1 more than the equilibrium 

strategy. 

Bidder 3's bidding function is given by: 

2c; + (4d2 + 10)0-5 

b; =  + 0.1 
5 

2 +   4c; 
b;=   + 0.1 

5 

if        0 < c; < 1 

if        1   < c; < 2 

The simulation revealed that the deviant bidder's profit was lower 

compared to the equilibrium strategy. The bidders playing the equilibrium strategy — 

Bidders 1 and 2 - received higher profits in this game than in the game where all players 

used the equilibrium strategy. 
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Figure 18 Average profit from bidding ~ Bidder 3 using a non-equilibrium strategy 

To verify this result, another simulation was conducted with a different 

non-equilibrium strategy. In this case Bidder 3 used a non-equilibrium strategy described 

with the bidding function: 
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2c; + ( 4c;2 + 10)°5 

bi = —  0.1 
5 

2 +   4ci 
b; 0.1 

if        0 < Ci < 1 

if        1   < c; < 2 

This  simulation revealed that the deviant bidder's profit was  lower 

compared to the equilibrium strategy. However, in this situation the competing bidders 

also had lower profits. The deviant 'low" bids helped Bidder 3 win more contracts than 

before. This reduced the profit for all the bidders, including Bidder 1 and 2 who played the 

equilibrium strategy. 
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Figure 19 Average profit from bidding ~ Bidder 3 using a non-equilibrium strategy 

To further verify the existence of an equilibrium strategy, the next scenario 

assumes all bidders deviate from their equilibrium strategy. The simulation was used to 

ascertain if any bidder could achieve a higher average payoff in this case. 
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This simulation assumed a random deviation from equilibrium, as opposed 

to a systematic non-equilibrium strategy. The bidding functions are given by: 

bi = . 

bi = 

2ci + (4*Ci2+10)0-5 

5 + 0.5*Rand() 

2 +  4*Ci 

5 + 0.5*Rand() 

if        0 < c; < 1 

if        1   < c; < 2 

Figure 20 shows that the average profit curves in this case follow a defined 

pattern. The random but symmetric bidding strategy generates this outcome. If the bidders 

used non-symmetric random deviations from their equilibrium strategy, then the expected 

average profit curve would not follows any particular pattern. 
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Figure 20 Average profit from bidding - All Bidders using a non-equilibrium 
strategy 

Figure 20 also demonstrates that all bidders had lower payoffs in this case, 

compared to the equilibrium strategy simulation. 
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b.        Summary 

After analyzing the results of the three-bidder computer simulation, it can 

be claimed that: 

1. The simulation converged to an average payoff of 0.105 after 1500 simulated 

auctions. This result confirms the theoretical prediction that number of bidders 

is one of the decisive elements. The higher the number of the bidders, the lower 

their expected profit. 

2. The equilibrium strategy maximizes the bidders' expected average profit; 

deviations from the equilibrium strategy reduce profit for the deviant bidder, as 

in the two bidder simulation. 

3. If the deviant bid is below the equilibrium strategy, then all bidders had lower 

expected payoffs. If the deviant bid is above the equilibrium strategy, then the 

equilibrium strategy bidders have a higher expected profit on average. 

5.        Conclusions from the Simulations with Triangular Distribution 

1. Changing the production cost distribution did not affect the general results, but 

substantially altered the expected numerical outcomes of the simulated FPSBA, 

both in two and three bidder simulations. The difference between the expected 

average profit derives from the probability distributions' characteristics. 

2. The equilibrium strategy maximizes the bidders' expected average profit; 

deviating from the equilibrium bid reduces profit for the deviant bidder. The 

non-equilibrium strategy reduces the average profit for all bidders if the deviant 

bid is below the equilibrium bid. 

3. Adding additional competitors to the game does not change the nature of the 

game; the additional competitor reduces both the average winning bid and the 

average profit. 
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D.       CONCLUSIONS 

The FPSBA simulation revealed the bidders' fundamental characteristics in the 

bidding for contract games. The model assumptions helped to isolate the most influential 

factors, however assuming risk neutrality for the bidders is dubious. The computer 

simulation results affirm: 

1. The equilibrium strategy maximizes the bidders expected average profit; it 

appear to be a dominant strategy. Changes in the cost distribution do not effect 

this pattern; however, the specific values of the expected profit did change with 

the cost distribution. 

2. The number of computing bidders is another influential factor in FPSBA. The 

additional competitors reduce both the average bid and the average profit. 

However, the additional competitor did not change the nature of the game. 

3. Deviations from the equilibrium strategy cause an expected loss for the deviant 

bidder. If the deviation is below the equilibrium strategy, all the bidders receive 

lower expected payoffs. 

4. If the deviant bid is above the equilibrium strategy, it increases the expected 

profit of the equilibrium strategy bidder. 

5. The bidding for contract game simulation appears to be valid. The difference 

between the computed and simulated results is insignificant. The computations 

in Appendix B and the simulation results will converge if the number of 

simulated auctions increases. 

57 



58 



IV. CONCLUDING OBSERVATIONS 

To motivate the conclusions with recommendations, the research questions posed 

in Chapter I will be reviewed and discussed. In addressing each of the primary and 

subsidiary research questions, this Chapter will discuss the theoretical basis of the FPSBA 

simulation described in Chapter II. The experiment's findings, presented in Chapter III, 

will be the conclusions' foundation. Following these discussions, recommendations will be 

provided regarding the application of the FPSBA simulation in the HDF's acquisition 

practice; and further research areas will also be outlined. 

A.       FPSBA RESEARCH QUESTIONS 

As presented in Chapter I the primary research question was: How do profit 

maximizing suppliers choose their bids in a competitive environment? Before answering 

this question each subsidiary question will be answered. 

1. Subsidiary Questions and Discussion 

This discussion will clarify the answer to the primary question and provide the 

foundation for recommendations. 

a.        Subsidiary Question 1 

Does the FPSBA have a game equilibrium, and if it has, what are the 

equilibrium strategies of the bidders? Chapter II of the thesis analyzed and reviewed the 

auctioning theory. The bidding for contract game had been classified as a specific instance 

of a static non-cooperative game with incomplete information. The theory predicts that 

these games have an equilibrium. This Thesis found and analyzed the symmetric linear 

equilibrium in bidding for contract games. 

Chapter II derived the equilibrium strategies for the bidder when the 

bidders' production cost has either a uniform or triangular distribution. The resulting 
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equations — called bidding functions ~ were used to conduct the FPSBA simulations. 

Several assumptions were made about the bidders' information space and strategic 

behavior. These assumptions provide a better understanding of the game and made it 

easier to construct the bidding for contract game model. The developed model was used 

to compose the simulation algorithm and the code for the computer simulations. This 

thesis used Excel 5.0 spreadsheet software and Visual Basic language to conduct the 

simulations. 

The first simulation was conducted with a uniform cost distribution. The 

first of the three simulated FPSBA scenarios defined the existence of the theoretically 

predicted game equilibrium. The simulation conducted with the equilibrium bidding 

function supported the , theoretical prediction. The simulated auctions provided 

approximately equal average expected payoffs for the bidders. The two-bidders' 

equilibrium strategy simulation result was used to validate the applied simulation model. 

The expected difference between the two bids, computed by using order statistics, is the 

expected average profit for the winner. The order statistics results were virtually identical 

with the simulation's results. Considering both the theoretical predictions, and the 

simulations conducted both for the uniform and triangular distributions, there exists a 

well-defined symmetric Bayesian Nash equilibrium in the FPSBA games. 

The revealed game equilibrium and the proven existence of the equilibrium 

strategy provide the opportunity to predict some behavior of the potential suppliers. 

However, the user should be aware of the probabilistic character of the simulated game. It 

cannot forecast the actual behavior of the bidders in a particular auction but it can 

approximate the general pattern and the expected average wining bid with a reasonable 

accuracy. 

b.        Subsidiary Question 2 

Do the bidders have a dominant strategy in First Price Sealed Bid 

Auctions? An equilibrium strategy should also simultaneously maximize the bidders' 

profits. If a strategy maximizes the bidders' payoff, no-bidder is willing to deviate from the 
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strategy. This is an equilibrium of the game. This equilibrium condition was explored in 

simulations where one of the bidders deviated from the equilibrium strategy. Another 

scenario explored the consequences if all bidders used non equilibrium strategies. 

The simulation results supported the theoretical prediction. Deviations 

from the equilibrium strategy caused an expected loss for the deviant bidders. If the 

deviation in bidding was negative i.e., bids were below the equilibrium strategy bids, then 

the bidders achieved a lower expected payoff If just one bidder deviated from the 

equilibrium strategy in a positive direction, than the equilibrium strategy bidder's expected 

profit was higher on average. 

These findings support the assumption about the existence of an 

equilibrium strategy in FPSBA. However, this equilibrium strategy does not satisfy the 

strong criteria of equilibrium; the bidder should have a best bid regardless of how high he 

believes the others will bid. 'Each bidder in the FPSBA chooses his best bid given his 

guess (correct in equilibrium) of the decision rule being followed by the other bidders." 

[Ref. 4] That is why, the bidders in a FPSBA do not have a dominant strategy. 

The game equilibrium satisfies the weak criterion of Nash equilibrium. This 

Thesis did not analyze the entire scale of the potential equilibrium opportunity. The 

assumed information symmetry and preference equality made it possible to analyze only 

the symmetric Nash equilibrium in the game. 

c. Subsidiary Question 3 

How does the change in bidders' numbers affect the outcome of the 

FPSBA? One of the most influential factors affecting the game outcome is the number of 

bidders involved in the FPSBA. The theory predicts this both for the uniform and 

triangular cost distribution. The bidders' number is always present in the general form of 

the bidding functions that supports the predictions. The conducted simulations supported 

the theoretical prediction. 

To extend the simulations' finding, the bidding function derived for n 

bidders was used to represent how changing the participants' numbers affects the auctions' 
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outcome. Figure 21 shows the changes in bids as a function of the bidders involved in the 

game. The graph has been constructed with constant production costs, for the uniform 

distribution over the cost range [0, 1]. 

Figure 21 was created for two costs, ci = 0.8 and c2 = 0.4. As the Figure 

indicates, the bidders' expected bids decrease if the bidders' number increases from two 

and to ten. Adding bidders beyond ten will not significantly decrease the expected bid. 

5        6       7        8 

Nuber of bidders 

10      11      12 

Figure 21 Expected bid as function of the bidders' number 

The triangular distribution may better approximate the real costs than the 

uniform distribution. Figure 22 shows the changes in bids as function of the bidders 

involved into the game. This graph has been created with constant production cost, for the 

triangular distribution over the cost range [0, 2]. 

Figure 22 was completed for two constant cost cases, Ci = 0.8 and c2 = 1.4. 

As the Figure shows, the bidders' expected bid decreases dramatically as the bidders' 

number increases from two to ten. Adding bidders beyond ten will not significantly 

decrease the expected bid. 
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Figure 22 Expected bid as function of the bidders' number 

The participants' number influences the bidders' decision in FPSBA. The 

bidders consider it a potential factor affecting the probability of winning the auction. The 

higher the number of bids, the higher the probability that any given bid will not be the 

lowest bid. The expected bid decreases as the participants' number increases. 

d.        Subsidiary question 4 

How does changing the cost distribution affect the outcome of the 

FPSBA? Changing the probability distribution of production cost did not substantially 

change the pattern of the FPSBA. The change, however, had a significant effect on the 

value of the bids and the bidders' expected average profit. To define the difference 

between the expected average profits, a simulation was conducted for uniform cost 

distribution of [0, 2] and two bidders. The bidders' expected average payoff was 0.668, 

which is 80% higher than the expected average profit with a triangular distribution over 

the same range with mode [1]. 
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The following table presents how the change in bidders' numbers effects 

the outcome of the simulated FPSBA. 

Expected average payoff 

Equilibrium 
strategy 
games 

Uniform cost 
distribution over 
the range [0, 1] 

Uniform cost 
distribution over 
the range [0, 2] 

Triangular cost 
distribution over the range 

[0,2] with mode [1] 

Two Bidders 0.168 0.334 0.196 

Three Bidders 0.083 0.167 0.105 

Table 1 Changes in expected average profit 

The change in the cost distribution assumption has a substantial influence 

on the FPSBA outcomes. However, it is not just the cost distribution that affects the 

bidding outcomes. The bidders' perception about the cost for the other participants 

influences their bids as well. This Thesis assumed that the cost distributions are common 

knowledge among the bidders; it did not analyze the potential influence if the bidders have 

different cost assumptions. 

In reality, bidders and the buyer have asymmetric information about the 

cost distribution. Each bidder has private information about their cost, but this cost is a 

random variable influenced by several factors. The suppliers send signals about their cost 

to the buyer and to each other. It is in the senders' interest to distort this information, 

mostly in an increasing direction. The bidders and the buyer have to be aware of this 

strategic misrepresentation and strategic misinterpretation. 

e.        Subsidiary Question 5 

How can HDF use the findings of this Thesis in their acquisition 

practice? Discussing subsidiary question 5, this section will make recommendations for 

the HDF's procurement practice. Some finding of this Thesis can be applied without any 

further considerations. However, several findings could be used as guidelines; these 

finding should refer to the actual situation. 
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Both the theory and the simulation revealed that the equilibrium strategy is 

the strategy that maximizes the bidders' expected profit. The suppliers will likely use this 

strategy when they formulate their bids in a real bidding for contract game. The 

procurement practice can use this finding by projecting the expected winning bid. The 

equations can use these projections to forecast the expected spending on procurement, 

and to prepare negotiators for contract negotiations. The essence of these projections is 

forecasting the accurate expected cost range. The simulation cannot correct forecasts 

errors. 

Findings regarding the number of bidders and their effect on the expected 

bid can be used to establish the number of invited bidders. This thesis assumed that the 

HDF does not incur costs during the tender evaluation process because reliable cost data 

was missing. However, tender evaluation is not a cost-free procedure. Having data about 

the cost of evaluation, the HDF can conduct a cost and benefit analyses based on these 

data. Comparing the marginal costs and benefits the HDF may decide the number invited 

to tender. 

2. Primary Question and Discussion 

Bidders in a FPSBA offer their bids based on the information they have available. 

This Thesis assumed symmetry of information among the bidders. It further assumed that 

the most important information — the bidder's own production cost — is private 

information. The two most influential factors have been considered in building the FPSBA 

model. The number of bidders invited has been explicitly included in the model. The 

bidders' production cost assumption, the second influential factor, has been implicitly 

included in the model by assuming the production cost distribution. 

Preparing their bids, FPSBA bidders consider their own production cost, the other 

bidders' production cost distribution, and the number of competing bidders. They predict 

their own future production cost. They project their competitors' production costs based 
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on experience. The bidders know the potential competitors' bidding habits and production 

potentials. 

This Thesis approximated the bidders' mutual experience and knowledge by a 

probability distribution over production cost. The probability distribution of cost was 

either uniform or triangular. The uniform distribution of production cost is applicable 

when the buyer has no ex-ante information about the competing bidders' cost. The 

triangular distribution applies when the buyer has some information about the bidders' 

cost. 

The assumed profit maximizing behavior made it possible to derive the equilibrium 

bidding functions. These functions describe the dilemma bidders face in preparing their 

bid. The bidders have to bid to maximize their profit, but the bid should be low enough to 

have a reasonable chance to win the auction. The bidders have to tradeoff between the 

probability of winning with the expected profit if they win the FPSBA. 

B.   AREAS FOR FURTHER RESEARCH 

There are several areas of research that this Thesis did not explore. They are as 

follows: 

1. The Thesis assumed that the bidders are risk neutral. Altering this assumption 

to allow bidders to be risk averse would illustrate another aspect of the bidders' 

behavior in FPSBA. 

2. The FPSBA practice uses several methods to influence the bidders' behavior. 

Preferred measures are the reservation price and price discrimination among 

the bidders. Further research would highlight the effect of these measures on 

the FPSBA outcomes. 

3. The FPSBA was assumed to be a static game. The bidders send signals to each 

other and the buyer modifies its behavior after receiving and decoding these 

66 



signals. Further study could analyze the FPSBA activity as a dynamic Bayesian 

game and develop further understanding of these games. 

C.       FINAL THOUGHTS 

The FPSBA is an ancient market institution which has been used for thousand of 

years. The government contracting practice uses FPSBA because it furnishes an efficient 

solution to the economic and resource allocation problems. The bidders' behavior in 

FPSBA is determined by several factors and perceptions. Using the game theory approach 

in microeconomics, this behavior can be analyzed and described. The game simulation is 

one method to explore this issue. However, one should not confuse the simulation with 

reality. A stochastic system model provides data which one can expect on average. These 

models do not prescribe the players' behavior; they forecast and describe average behavior 

over time. 
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APPENDIX A. THE BIDDING FUNCTIONS FOR N BIDDERS 

This Appendix derives the general form bidding function for the uniform and 

triangular cost distributions. 

UNIFORM COST DISTRD3UTION 

Suppose Players 1, 2, 3, ..., n adopt the strategy b(-), and assume that b(-) is 

strictly increasing and differentiable. Then for a given value of Ci, player i's optimal 

bidding strategy solves: 

max[(bi - c;)* Prob(bi < b(Cl),..., b; < b(c„))] 

n - denotes the number of bidders. 

Using the same approach as in case of three bidders, we can define the probability: 

Prob(bi < b(Ci+1),..., bi < b(c„))= (1 - b-^i))"-1 

The first order condition for player i's optimization problem is therefor: 

d[(b; - ci)* (1 - b"1 (bOr^/dbi = 0 

(1 - b"1 (bi))"-1 + (bi - cO*(n -1)*(1 - b-'CbOr^dO - b'^bOydbi = 0 

Implying the same assumption as in case of three bidders, we substitute b; = b(ci) 

into the first order condition, yielding: 

(1 - b'^Kci))"'1 + (b(ci) - c;)*(n -1)*[1 - b-1(b(ci))]n-2*d(l - b^Kci^/dbi = 0 

where: b^Kci)) = c; and d(l - b^Kci^/db; = - l/b'(cO 

Thus, b(-) must satisfy the first order differential equation: 

(1 - Cif1 - (b(ci) - c;)*(n-l)* (1 - Ci)
n-2*l/b'(ci) = 0 

(1 - Cif1 = (b(ci) - Ci)*(n-1)* (1 - Ci)n-2*l/b'(ci) 

We can express this equation as: 

b'(Ci)*(l - Ci)""1 - (n -1)* b(ci) = - (n - l)*c; 

The left hand side of this equation can be rewritten as: 

b'(c;)*(l - Ci)""1 - (n - l)*b(ci) =1/(1- Ci)n-2*d(b(ci)*(l - CifVdci 
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So, the original equation can be rewritten as: 

1/(1 - Ci)
n-2* d(b(Ci)*( 1 - CifVdci = - (n - l)*Ci 

d [(b(c;)*(l - ci)
n-1]/dci= -Ci*(n -1)*(1 - df2 

Integrating both sides of this differential equation, the right hand side by parts 

yields: 

Jd [(b(cO*(l - Ci)M]dCi= Id* (- (n -1)*(1 - Ci)
n-2)dCi 

b(Ci)*(l - arl= ci*(l - Ci)01"" -J(l - cO"-1 dc; 

b(Ci)*(l - c;)"-1 = c;*(l - cO""1 + [(1 - Ci)
n]/n + k 

To determine k, we have to use the boundary conditions. That is, b(c;) >= c;. 

If c; = 1, b(l) is finite, which is true. Thus k = 0 

Substituting this value of k into the original equation, we find the bidding function 

fori. 

b(ci) = c; + (1 - c;)/n = (1 + (n -l)*c;)/n 

Under the assumption that the players' strategies are strictly increasing and 

differentiable, we have a linear and symmetric Nash equilibrium in the n person bidding 

game. 

Applying the same method, the bidding function for the interval [0, 1] can be 

derived for the cost range [h, 1]. In this case, the bidding function takes the form 

b(Ci) = ((h-l) + (n-l)*Ci)/n 

Where: 1 < h and 
1 -   the lower limit of the distribution 
h -  the upper limit of the distribution 

COST DISTRIBUTION IS TRIANGULAR 

In general, a random variable X has a triangular distribution if its probability 

density function f(x) is given by 

f2*(x - l)/(h - l)*(m - 1) 1< x < m 
f(x) = i 2*(n - x)/(h - l)*(h - m) m < x < h 

[o elsewhere 
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Where: 1< m < h and 
1 - the lower limit of the distribution 
h - the upper limit of the distribution 
m - the mode of the distribution. 

Height = 2/(h-l) 

Figure 22 PDF of the triangular distribution 

The cumulative distribution function F(x) of the triangular distribution is given by 

fo 
I (x - l)2/(h - l)*(m -1) 

F(x) =  -il-(h-x)2/(h-l)*(h-m) 
ll 

x <1 
1 <x<m 
m<x<h 
x>h 

Player i's optimal bidding strategy solves: 

max(bi - c;)* Prob{b; < b(ci+1),..., b; < b(Cn)} 

The number of players in the bidding game is n, so the probability that bj(c) is the 

lowest bid is defined by: 

Prob{bi < b(ci+0 ,..., bi < b(cO}= (1 - b'^bOr1 

The first order condition for player i's optimization problem is therefor: 

d[(bi-ci)*(l-b-1(bi)r1]/dbi = 0 

The triangular distribution has  special  characteristics.   It  has two  different 

distributions over the interval [1, h]. The dividing limit of the interval is the mode of the 

distribution [m]. This Appendix will define the bidding function for bidders if their cost 

falls in different intervals over [1, h]. 

Definition of the bidding function for cost interval [1, m] 

The bidders' expected profit E(%), has a maximum if the dE(7i)/db = 0 

E(7t) = (b-c)*(l-F(x)) n-l 
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d[(b - c)*(l - (b - l)2/(h - l)*(m -1))"-1]/* = 

= [Kl - (b -1)2] "-1 + (b - c)*(n -1) [Kl - (b -1)2] n"2*(-2*(b -1)) = 0 

Where: Kl = (h-l)*(m-l) 

Factoring out [Kl - (b -1)2]n"2 yields: 

Kl - (b -1)2 -2*(n -1) (b - c)*(b -1) = 0 

Kl - (b2 - 2b*l +12) - 2*(n - l)(b2 - c*b - b*l + c*l) = 0 

-[2*(n -1) + l]*b2 + 2*[n*l + (n - l)*c]*b + Kl -12 - 2*(n - l)*c*l = 0 

-[(n -1) + 0.5]*b2 + [n*l +(n - l)*c]*b +[K1 -12 - 2*(n - l)*c*l]/2 = 0 

Solving for b using the quadratic formula, we get the general formula for the 

bidding function, when the cost distribution is triangular and actual costs are in the interval 

[I,m]: 

n*l + (n - l)*c + {(n*l + (n - l)*c)2+2*[((n -1) + 0.5)*(K1 -12 - 2*(n - l)*c*l)]}a5 

b =   
2*[(n-l) + 0.5] 

Using this formula,  we can derive all the necessary bidding functions by 

substituting in the actual parameter values. 

Definition of the bidding function for cost interval [m, h] 

The bidders' expected profit E(u), has a maximum if the dE(7c)/db = 0. 

E(7c) = (b-c)*[l-F(x)]n-1 

d{(b - c)* {1- [1 - (h - b)2/(h - l)*(h - m)] } n"Vdb = 

=1/K2 *{[(h - b)2] -1 + (b - c)*(n - 1) [(b -1)2] n"2*-2*(h - b)} = 0 

Where: K2 = (h-l)*(h-m) 

Factoring out [(h - b)2]n"2 yields: 

(h - b)2 - [2*(b - c)*(n -1) *(h - b)] = 0 

Factoring out (h - b) yields: 

h - b - 2*(n - l)*(b - c) = 0 

72 



Solving for b, gives the general formula for the bidding function when the cost 

distribution is triangular and costs are in the interval [m, h] 

h + 2*(n-l)*c 
b =   

2*(n - 1) + 1 
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APPENDIX B. DEFINITION OF EXPECTED COSTS AND BID 

This appendix derives the formulas for computing the expected values of the 

lowest and the second lowest costs, and the lowest bid when the bidders' production costs 

have uniform distributions. 

The game simulation defines the bidders' average expected profit. To validate the 

simulation result and verify the simulation method, this thesis uses order statistics to 

determine the expected difference between the lowest and the second lowest cost. The 

difference is the winners' expected profit. 

Let Xi,.. .Xn be independent identically distributed random variables with PDF f(x) 

and CDF F(x). Then, the i-th order statistic x;* has a PDF [Ref. 13:pgl51]: 

f(x;*) = (n!/(i - l)!*(n - i)!)*(F(x))i"1*(l - F(x)r*f(x) 

Let Ci* =min(ci,...,c„) and c2* = min(c2,...,c„) be the lowest and the 

second lowest members of an order statistics 0 < Ci* < c2* < ... < c„* < 1. The sample 

was drawn from a random variable distributed uniformly over the range [0, 1]. 

The probability density function for the random variable is: 

f(cj) =1 if 0 < x < 1     and f(c;) = 0 elsewhere. 

The cumulative distribution function is: 

F(x) = x if 0 < x < 1 
= 0 if x < 0 
= 1 if x > 1 

The expected value of a random variable [Ref. 13: pg.: 42] 

E(x) = Jf(x)*F(x)dx 

Derivation of the expected lowest and the second lowest costs 

The PDF of the lowest cost is equal to the PDF of the first order statistic, ci*: 

fCd*) = n!/(n - l)!*x°*(l - x)1"1 = n*(l - x)n_1 
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The expected value of the lowest order statistic E(ci*) is computed by: 

1 

E(ci*) = Jx*n*(l-x)n-1 

0 

Integrating the expression by parts yields: 

1      1 1 

E(d*) = - x*(l - x)n | + J (1 - x)ndx = - l/(n + 1)* (1 - x)n+1 | = 1/n+l 
0     0 0 

The PDF of the second lowest cost is equal to PDF of the order statistic c2*: 

f(c2*) = n!/(n - 2)!*x*(l - x)n'2 = n*(n -1)* x*(l - x)n"2 

The expected value of the second lowest order statistics 

1 

E(c2*) = n*/ x2* (n - 1)*(1 - x)n"2 

0 

Integrating the expression by part yields: 

1 1 1 

E(c2*) = - x2*(l - x)n_1 | + 2*Jx*n*(l - x)n_1dx= 2*J(1 - x)ndx 
0 0 0 

1 

E(c2*) = -2/n+l*(l-x)' n+l = 2/n + 1 
0 

Having derived the expected values of the lowest and the second lowest order 

statistics for a random sample drawn from a distribution for n bidders, we can define the 

expected values of the bidders' profit in simulated cases. 

In a two bidders simulation, the expected value of the lowest cost is: 

E(d*)= 1/n+l n = 2   E(d*) = 1/3 = 0.3333 

The expected value of the second lowest cost is: 

E(c2*) = 2/n + 1 n = 2   E(c2*) = 2/3 = 0.6666 

76 



In a three bidders simulation the expected value of the lowest cost is: 

E(ci*) = l/n+l n = 3   E(ci*) = 1/4 = 0.25 

The expected value of the second lowest cost 

E(c2*) = 2/n+l n = 3   E(c2*) = 2/3 =0.5 

Definition of the lowest bid's value 

To define the lowest bid's expected value, we have to derive the bids' PDF and the 

CDF. The bids' distribution depends on the cost distribution from which the bidders' costs 

are drawn. The correlation between the two distributions is define by the bidding function, 

which takes the general form: 

b = (1 + (n - l)*c)/n 

When the cost distribution is uniform over the range [0, 1], the bids are distributed 

uniformly over the range [1/n, 1]. We can get this result by transforming the cost 

distribution range and applying the bidding function. 

The PDF for the bids takes the form: 

f(b) = n/(n -1) if 1/n < b < 1 and f(b) = 0 otherwise 

The CDF for the bids takes the form: 

fo if b < 1/n 
F(b)= <!l/(n-l)*(n*x-l) ifl/n<b<l 

U if b> 1 

To derive the lowest bid's expected value, we will need the value: 

1 - F(b) = 1 - (n/n - l)*x + 1/n -1 = n/n - l*(x - 1) 

Applying the formula for the PDF of the i-th order statistics, define the PDF for 

the lowest bid f(bi*) as 

f(bi*) = n!/(n - l)!*(n/n - l)frl*(l - x^n/n - 1 = n*(n/n - l)n* (1 - xf1 

if l/n<b1*<b2*<bi*...<bn*<l 
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The expected value of the lowest bid, E(bi*) is 

1 1 1 

E(bi*) = (n/n - l)njx*n*(l - xf'dx = (n/n - l)n[-x(l - x)n] | +(n/n - l)n*j(l - c)n dx 
1/n 1/n 1/n 

E(bi*) = (n/n - l)n*l/n*(n -l/n)n + (n/n - l)n-(l - x)n+1/n + 1 
1/n 

E(bi*) = 1/n + (1/n +l)*(n - l)/n = 1/n + (n - l)/n*(n + 1) = 2/n + 1 

The lowest bid's expected value is given by: 

E(bi*) = 2/n + 1 

The lowest bid's expected value is equal to the expected value of the second 
lowest cost as predicted by the auctioning theory. 

E(bi*) = 2/n + 1 = E(c2*) = 2/n + 1 

Having derived the expected value of the lowest bid for n bidders we can define 

the lowest bids' expected value in simulated cases. 

In the two bidders simulation, the expected value of the lowest bid is given by: 

E(ci*) = 2/n+l n = 2   E(ci*) = 2/3 = 0.6666 

In the three bidders simulation, the expected value of the lowest cost is given by: 

E(ci*) = 2/n+l n = 3   E(d*) = 1/2 = 0.5 
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APPENDIX C. COMPUTER SIMULATIONS' FINAL RESULTS 

TWO-PLAYER BIDDING FOR CONTRACT GAME 

1.Uniform cost distribution 

Scenario 1.     Both bidders use the equilibrium strategy 

Total profit Won auction Average Profit 

Bidder 1 Bidder 2 Bidder 1 Bidder 2 Bidder 1 Bidder 2 

50 9.43 7.46 28 22 0.337 0.339 

100 19.30 13.40 56 44 0.345 0.305 

250 42.61 43.02 124 126 0.344 0.341 

500 83.48 86.42 248 252 0.337 0.343 

750 128.26 127.24 377 373 0.340 0.341 

1000 165.45 172.05 491 509 0.337 0.338 

1250 209.23 213.69 620 630 0.337 0.339 

1500 250.94 252.70 750 750 0.335 0.337 

Table 1 Data to Figure 3 

Average payoff Total payoff 

Auctions Bidder 1 Bidder 2 Bidder 1 Bidder 2 

50 0.189 0.1492 9.43 7.46 

100 0.193 0.1340 19.30 13.40 

250 0.170 0.1721 42.61 43.02 

500 0.167 0.1728 83.48 86.42 

750 0.171 0.1697 128.26 127.24 

1000 0.165 0.1720 165.45 172.05 

1250 0.167 0.1709 209.23 213.69 

1500 0.167 0.1685 250.94 252.70 

Table 2 Data to Figure 4 
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Scenario 2.    Bidder 1 used a non-equilibrium strategy while Bidder 2 use an 

equilibrium strategy 

Average payoff Total payoff 

Auctions Bidderl Bidder2 Bidderl Bidder2 

50 0.16 0.22 8.02 10.81 

100 0.16 0.23 15.62 22.57 

250 0.15 0.21 36.62 53.46 

500 0.14 0.21 69.07 107.21 

750 0.14 0.21 103.57 160.54 

1000 0.14 0.21 140.13 213.96 

Table 3 Data to Figure 5 

Average payoff Total payoff 

Auctions Bidder 1 Bidder 2 Bidder 1 Bidder 2 

50 0.19 0.11 9.57 5.33 

100 0.14 0.12 13.90 12.45 

250 0.13 0.13 32.40 32.54 

500 0.13 0.13 63.76 65.82 

750 0.12 0.14 91.16 101.29 

1000 0.12 0.13 122.30 133.08 

Table 4 Data to Figure 6 

Scenario 3.    Both bidders used a non-equilibrium strategy 

Average payoff Total payoff 

Auctions Bidderl Bidder2 Bidderl Bidder2 

50 0.123 0.090 6.15 4.52 

100 0.121 0.100 12.10 10.04 

250 0.112 0.107 28.08 26.85 

500 0.113 0.111 56.47 55.73 

750 0.107 0.115 79.95 86.25 

1000 0.105 0.113 105.04 112.51 

Table 5 Data to Fig. 7 
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2. Triangular cost distribution 

Scenario 1.      Both bidders use an equilibrium strategy 

Average Profit Total Payoff 

Auctions Bidderl Bidder2 Bidderl Bidder2 

50 0.184 0.165 9.19 8.24 

100 0.193 0.177 19.29 17.70 

250 0.217 0.169 54.36 42.25 

500 0.202 0.196 101.14 98.24 

750 0.197 0.201 147.54 150.93 

1000 0.197 0.201 197.09 200.67 

1500 0.198 0.194 297.26 290.61 

Table 6 Data to Fig. 12 

Scenario 2.     Bidder 1 used a non-equilibrium strategy while Bidder 2 used 

equilibrium strategy 

Average Profit Total Payoff 

Auctions Bidderl Bidder2 Bidderl Bidder2 

50 0.270 0.232 13.50 11.61 

100 0.213 0.256 21.29 25.60 

250 0.172 0.267 43.00 66.70 

500 0.191 0.257 95.55 128.65 

750 0.190 0.258 142.15 193.39 

1000 0.190 0.257 190.23 257.24 

Table 7 Data to Fig 13 

Average Profit Total Payoff 

Auctions Bidderl Bidder2 Bidderl Bidder2 

50 0.075 0.128 3.74 6.42 

100 0.067 0.142 6.68 14.17 

250 0.069 0.129 17.21 32.37 

500 0.068 0.124 33.99 61.93 

750 0.070 0.119 52.73 89.39 

1000 0.071 0.121 71.38 121.36 

Table 8 Data to Fig. 14 
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Scenario 3.    Both bidders used a non-equilibrium strategy 

Average Profit Total Payoff 

Auctions Bidderl Bidder2 Bidderl Bidder2 

50 0.155 0.125 7.73 6.26 

100 0.139 0.133 13.88 13.35 

250 0.137 0.130 34.16 32.49 

500 0.125 0.134 62.68 66.80 

750 0.129 0.138 96.66 103.37 

1000 0.131 0.136 131.39 136.14 

1500 0.125 0.137 188.19 206.12 

Table 9 Data to Fig 15 

THREE PLAYER BIDDING FOR CONTRACT GAMES 

1. Uniform cost distribution 

Scenario 1.      All bidders used an equilibrium strategy 

Average profit Won Auctions Total Profit 

Auctions Bidder 1 Bidder 2 Bidder 3 Bidder 1 Bidder 2 Bidder 3 Bidder 1 Bidder 2 Bidder 3 

50 0.24 0.25 0.26 13 19 18 3.15 4.69 4.60 

150 0.24 0.25 0.25 53 50 47 12.90 12.52 11.80 

250 0.25 0.25 0.25 83 72 95 20.59 18.29 23.57 

500 0.25 0.26 0.25 168 159 173 41.60 40.85 43.49 

1000 0.25 0.25 0.25 358 323 319 88.80 81.21 79.76 

1500 0.25 0.25 0.25 536 486 478 132.99 122.08 119.31 

2000 0.25 0.25 0.25 692 663 645 172.43 166.34 161.45 

2500 0.25 0.25 0.25 876 821 803 219.59 206.58 200.70 

Table 10 Data to Fig. 8 

Average Profit Total Profit 

Auctions Bidder 1 Bidder 2 Bidder 3 Bidder 1 Bidder 2 Bidder 3 

50 0.063 0.094 0.092 3.15 4.69 4.60 

150 0.086 0.083 0.079 12.90 12.52 11.80 

250 0.082 0.073 0.094 20.59 18.29 23.57 

500 0.083 0.082 0.087 41.60 40.85 43.49 

1000 0.089 0.081 0.080 88.80 81.21 79.76 

1500 0.089 0.081 0.080 132.99 122.08 119.31 

2000 0.086 0.083 0.081 172.43 166.34 161.45 

2500 0.088 0.083 0.080 219.59 206.58 200.70 

Table 11 Data to Fig. 9 
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Scenario 2.    Bidder 3 uses a non-equilibrium strategy while Bidder 1 and 2 use 

an equilibrium strategy: 

Average profit Total profit 

Auctions Bidderl Bidder2 Bidder3 Bidderl Bidder2 Bidder3 

100 0.097 0.111 0.047 9.70 11.05 4.66 

250 0.109 0.104 0.042 27.30 25.88 10.39 

500 0.111 0.105 0.040 55.54 52.28 20.19 

750 0.110 0.101 0.047 82.64 76.06 35.54 

1000 0.112 0.100 0.044 111.83 100.41 44.45 

1500 0.108 0.105 0.048 161.53 157.24 71.64 

Table 12 Data to Fig. 10 

Average profit Total profit 

Auctions Bidderl Bidder2 Bidder3 Bidderl Bidder2 Bidder3 

100 0.060 0.062 0.051 5.99 6.22 5.07 

250 0.062 0.065 0.043 15.55 16.31 10.82 

500 0.062 0.071 0.041 31.10 35.43 20.49 

750 0.062 0.071 0.041 46.21 53.31 30.65 

1000 0.061 0.068 0.041 61.06 68.03 41.17 

1500 0.062 0.064 0.042 92.73 96.03 62.52 

Table 13 Data to Fig. 11 

Scenario 3.    All bidders use a non-equilibrium strategy: 

Average profit Total profit 

Auctions Bidderl Bidder2 Bidder3 Bidderl Bidder2 Bidder3 

100 0.052 0.087 0.061 5.17 8.73 6.10 

250 0.066 0.065 0.068 16.51 16.35 16.89 

500 0.066 0.069 0.068 33.13 34.35 34.17 

750 0.066 0.071 0.063 49.26 53.15 47.29 

1000 0.066 0.070 0.065 65.52 69.90 64.72 

1500 0.067 0.068 0.066 100.00 101.70 99.62 

Table 14 Data to Fig. 12 
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2. Triangular cost distribution 

Scenario 1.     All bidders use an equilibrium strategy 

Average profit Total profit 

Auctions Bidderl Bidder2 Bidder3 Bidderl Bidder2 Bidder3 

50 0.121 0.141 0.243 6.06 7.05 12.16 

100 0.151 0.147 0.170 15.07 14.73 16.97 

250 0.151 0.155 0.148 37.65 38.81 37.00 

500 0.165 0.145 0.151 82.63 72.45 75.36 

750 0.162 0.145 0.162 121.52 108.75 121.39 

1000 0.161 0.152 0.159 160.55 151.95 158.52 

1500 0.160 0.154 0.156 240.13 231.55 233.68 

Table 15 Data to Fig. 17 

Scenario 2.    Bidder 3 uses a non-equilibrium strategy while Bidder 1 and 2 use 

an equilibrium strategy 

Average profit Total profit 

Auctions Bidder 1 Bidder 2 Bidder 3 Bidder 1 Bidder 2 Bidder 3 

50 0.164 0.189 0.106 8.19 9.43 5.32 

100 0.179 0.175 0.132 17.91 17.45 13.19 

250 0.158 0.185 0.164 39.55 46.20 40.93 

500 0.171 0.182 0.146 85.29 91.00 72.84 

750 0.156 0.195 0.148 116.81 146.62 110.95 

1000 0.162 0.191 0.154 161.78 190.51 154.22 

1500 0.173 0.177 0.153 258.78 266.07 228.94 

Table 16 Data to Fig. 18 

Average profit Total profit 

Auctions Bidder 1 Bidder 2 Bidder 3 Bidder 1 Bidder 2 Bidder 3 

50 0.134 0.130 0.111 6.68 6.50 5.53 

100 0.129 0.141 0.119 12.85 14.06 11.95 

250 0.143 0.109 0.119 35.75 27.26 29.63 

500 0.153 0.120 0.116 76.44 59.88 57.76 

750 0.149 0.128 0.117 111.68 95.85 87.77 

1000 0.147 0.137 0.117 146.70 136.79 117.04 

1500 0.141 0.142 0.117 211.02 213.15 175.08 

Table 17 Data to Fig. 19 
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Scenario 3.     All bidders use a non-equilibrium strategy 

Average profit Total profit 

Auctions Bidder 1 Bidder 2 Bidder 3 Bidder 1 Bidder 2 Bidder 3 

50 0.080 0.102 0.159 8.00 10.21 15.93 

100 0.101 0.142 0.129 20.24 28.32 25.78 

150 0.105 0.147 0.140 31.48 44.13 42.02 

250 0.122 0.145 0.136 61.057 72.312 68.089 

500 0.127 0.128 0.140 126.92 128.07 140.05 

750 0.129 0.125 0.140 193.54 187.68 209.26 

1000 0.130 0.127 0.137 259.96 254.38 273.77 

1500 0.128 0.131 0.133 384.00 393.99 398.52 

Table 18 Data to Fig. 20 
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APPENDIX D. VISUAL BASIC PROGRAMS FOR SIMULATIONS 

1. Simulation program with uniform cost distribution 

" simul2 Macro simulation of three bidders auction 
1 Macro recorded 4/9/97 by Andras I. Kucsma 

" The program has been prepared for n bidders. However, 

' to extend it for more than three bidders the program 
1 needs some adjustment. It has to be added 

' - new subroutines of cost and bid calculation; 

' - the selection of the winner must be corrected too. 

Sub simul2() 
Application. ScreenUpdating = False 

Definition of the variables 
Dim 1, h, n, Num, Costl, Cost2, Cost3 As Variant 

Dim Bidl, Bid2, Bid3, Payoffl, PayoflE2, PayoflB As Variant 

Dim Randl, Rand2, Rand3 As Variant 

Giving initial values to variables 

Sheets("Sheetl").Select 

h=l 

Range("bl"). Select 

ActiveCell. Value = h 

1 = 0 

Range("dl").Select 

ActiveCell. Value = 1 

n = 3 

Range("el"). Select 

ActiveCell. Value = n 

Num = 0 

Start loop enter the required number of loops after "To" 

For Num = 1 To 500 
Randomize 'sets the seed number of random number generation to a new value 

' Cost generation 

Costl =Rnd*(h-l) + l 
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Range("a3"). Select 

ActiveCell. Value = Costl 

Cost2 = Rnd*(h-l) + l 

Range("b3"). Select 

ActiveCell. Value = Cost2 

Cost3 = Rnd * (h -1) +1 

Range("c3"). Select 

ActiveCell. Value = Cost3 

1 Computation of bids 

Bidl = ((h -1) + (n -1) * Costl) /n 

Range("d3"). Select 

ActiveCell.Value = Bidl 

Bid2 = ((h -1)+ (n -1) * Cost2) / n 

Range("e3"). Select 

ActiveCell. Value = Bid2 

Bid3 = ((h -1) + (n -1) * Cost3) / n 

RangeC'ß"). Select 

ActiveCell. Value = Bid3 

' Selecting the winning bid 

If Bidl < Bid2 And Bidl < Bid3 Then GoTo Rowl: Else GoTo Row2: 

Rowl: 
Payoffl = Bidl - Costl 

Range("g3").Select 

ActiveCell. Value = Payoffl 

GoTo Row6: 

Row2: 
If Bid2 < Bidl And Bid2 < Bid3 Then GoTo Row3: Else GoTo Row4: 

Row3: 

Payoff2 = Bid2 - Cost2 

Range("h3"). Select 
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ActiveCell. Value = Payoffi 

GoTo Row6 

Row4: 

If Bid3 < Bidl And Bid3 < Bid2 Then GoTo Row5: 

Row5: 

PayofB = Bid3 - Cost3 

Range("i3"). Select 

ActiveCell. Value = PayoflB 

GoTo Row6 

Row6: 

Range(" A4"). Select 

Selection.EntireRow.Insert 

Range("A3:j3"). Select 

Selection. Copy 

Range('A5").Select 

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 

SkipBlanks:=FaIse, Transpose:=False 

Application. CutCopyMode = False 

Range("A3:i3"). Select 

Selection.Clear 

Next 
Row6: 

For I = 1 To 3 ' Loop 3 times. 

Beep   ' Sound a tone. 

Next 

End Sub 

2. Simulation program with triangular cost distribution 

' simul2 Macro simulation of two bidders auction 

' Distribution is triangular 

' Macro recorded 4/9/97 by Andras I. Kucsma 

' The program has been prepared for n bidders. However, 

' to extend it for more than two bidders the program 
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' needs some adjustment. It has to be added 

' - new subroutines of cost and bid calculation; 

' - the selection of the winner must be corrected too. 

Sub simul2() 

Application. ScreenUpdating = False 

Dim h, m, 1, n, Num, Randl, Rand2, Costl, Cost2 As Variant 

Dim Bidl, Bid la, Bid lb, Bidlc, Bid2, Bid2a, bid2b As Variant 

Dim Payoffl, Payoffi As Variant 

' Giving initial values to variables 

Sheets("SheetlH).Select 
1 = 0' lower limit of cost range 
Range("bl"). Select 
ActiveCell. Value = 1 

m = 1' mode of the cost distribution 
Range("dl"). Select 
ActiveCell. Value = m 

h = 2 'the higher limit of cost range 
Range("fl"). Select 
ActiveCell. Value = h 
Bidla = 0 
Bidlb = 0 
Bodlc = 0 

n = 2 ' number of bidder 

' Start loop enter the number of required after "To" 

Num = 0 

For Num =1 To 250 

'Computation of costs 
Randomize ' sets the seed number of the random number generator 

' Computation of Costl 

Randl = Rnd() 
If Randl < ((m -1) / (h -1)) Then 

Costl = ((Randl * (h -1) * (m -1)) A 0.5) +1 
Else 
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Costl = h - ((1 - Randl) * (h -1) * (h - m))A 0.5 
End If 

'Costl to Sheet 1 
Sheets("Sheetl").Select 
Range("a3"). Select 
ActiveCell. Value = Costl 

' Computation of Cost2 

Rand2 = Rnd() 
If Rand2 < ((m -1) / (h -1)) Then 

Cost2 = ((Rand2 * (h -1) * (m -1)) A 0.5) +1 
Else 
Cost2 = h - ((1 - Rand2) * (h -1) * (h - m))A 0.5 

End If 
' Cost2 to Sheet 1 

Sheets("Sheetl").Select 
Range("b3"). Select 
ActiveCell. Value = Cost2 

' Computation of bids 

Bidla = (n-l) + 0.5 

IfCostKmThen 

Bidlb = n*l + (n-l)* Costl 

Bidlc = Bidla*(h-l)*(m-l)-(lA2)-(2*Costl *(n-1) * 1) 

Bidl = (Bidlb + (Bidlb A 2 + 2 * Bidlc) A 0.5) / (2 * Bidla) 

Else 

Bidl = (h + (2 * (n -1) * Costl)) / (2 * Bidla) 

End If 

'bidl to Sheetl 

Sheets("Sheetl").Select 

Range("c3"). Select 

ActiveCell. Value = Bidl 
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' Computation of Bid2 

IfCost2<mThen 
bid2b = n * 1 + (n -1) * Cost2 

Bid2c = Bidla * (h -1) * (m -1) - (1A 2) - (2 * Cost2 * (n -1) * 1) 

Bid2 = (bid2b + (bid2b A 2 + 2 * Bid2c) A 0.5) / (2 * Bidla) 

Else 
Bid2 = (h + (2 * (n - 1) * Cost2)) / (2 * Bidla) 

End If 

'Bid2 to Sheet 1 
Sheets("Sheetl"). Select 
Range("d3"). Select 
ActiveCell. Value = Bid2 

'Defining the winner and its Payoff 

If Bidl < Bid2 Then GoTo Rowl: Else GoTo Row2: 

Rowl: 
Payoffl = Bidl - Costl 
Range("e3"). Select 
ActiveCell. Value = Payoffl 
GoTo Row3: 

Row2: 
Payoff2 = Bid2 - Cost2 
Range("D").Select 
ActiveCell. Value = Payoff2 
GoTo Row3 

Row3: 
' Collecting result of the auction in new row 

Range(" A4"). Select 
Selection.EntireRow.Insert 

Range("A3:g3"). Select 
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Selection. Copy 

Range("A5"). Select 

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 

SkipBlanks:=False, Transpose:=False 

Application. CutCopyMode = False 

Range("A3:F3"). Select 

Selection. Clear 

Next 

'End signal 

For I = 1 To 3 ' Loop 3 times. 

Beep   ' Sound a tone. 

Next 

End Sub 
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APPENDIX E. STATISTICAL ANALYSES OF COST DISTRIBUTION 

This thesis used the Excel 5.0 software data analyzer package to inspect the 

distribution of random variables used in the simulations. Selected data series were 

analyzed using histograms and cumulative probabilities. The results of the analyses are 

presented in this Appendix. 

Analysis of costs used in simulations with uniform distributions 

Histogram of Bidder l's cost distribution 
used in equilibrium bidding simulation 

Frequency 

Cumulative % 

i"iHi'aiHiHi'li°riHiHil 
OOOOOOOOOOOOQ 

oooT-T-(\irMCMWP5'«r'*r''J-tnio<D<oa>i-.r*-cocoooo>ö> 
ööööötiööööööööööööööööööö 

Bin 

Figure 1 Histogram of uniform distribution 
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Histogram of Bidder 2's cost distribution 
used in equilibrium bidding simulation 

I Frequency 

- Cumulative % 

Bin 

Figure 2 Histogram of uniform distribution 

Data of the cost distribution histograms for uniform distribution 

Bidder l's cost Bidder 2's cost 

Bin Frequency Cumulative % Bin Frequency Cumulative % 

0.001 1 0.0% 0.000 1 .0% 

0.021 55 2.2% 0.020 53 2.2% 

0.041 69 5.0% 0.040 46 4.0% 

0.061 45 6.8% 0.060 49 6.0% 

0.081 58 9.1% 0.080 57 8.2% 

0.101 51 11.2% 0.100 64 10.8% 

0.121 50 13.2% 0.120 55 13.0% 

0.141 54 15.3% 0.140 60 15.4% 

0.161 47 17.2% 0.160 42 17.1% 

0.181 51 19.2% 0.180 56 19.3% 

0.201 47 21.1% 0.200 51 21.4% 

0.221 63 23.6% 0.220 39 22.9% 

0.241 45 25.4% 0.240 51 25.0% 

0.261 43 27.2% 0.260 49 26.9% 

0.281 57 29.4% 0.280 44 28.7% 

0.301 40 31.0% 0.300 39 30.2% 

0.321 43 32.8% 0.320 39 31.8% 

0.341 43 34.5% 0.340 57 34.1% 

0.361 55 36.7% 0.360 46 35.9% 

0.381 47 38.6% 0.380 48 37.8% 

0.401 46 40.4% 0.400 53 40.0% 

0.421 44 42.2% 0.420 53 42.1% 

0.441 45 44.0% 0.440 47 44.0% 
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Bin Frequency Cumulative % Bin Frequency Cumulative % 

0.461 50 46.0% 0.460 46 45.8% 

0.480 58 48.3% 0.480 42 47.5% 

0.500 46 50.1% 0.500 68 50.2% 

0.520 57 52.4% 0.520 44 52.0% 

0.540 38 53.9% 0.540 38 53.5% 

0.560 44 55.7% 0.560 63 56.0% 

0.580 40 57.3% 0.580 57 58.3% 

0.600 64 59.8% 0.600 53 60.4% 

0.620 61 62.3% 0.620 56 62.6% 

0.640 55 64.5% 0.640 49 64.6% 

0.660 46 66.3% 0.660 51 66.6% 

0.680 64 68.9% 0.680 52 68.7% 

0.700 41 70.5% 0.700 40 70.3% 

0.720 54 72.7% 0.720 47 72.2% 

0.740 61 75.1% 0.740 52 74.3% 

0.760 55 77.3% 0.760 45 76.1% 

0.780 55 79.5% 0.780 45 77.9% 

0.800 47 81.4% 0.800 57 80.2% 

0.820 50 83.4% 0.820 47 82.0% 

0.840 41 85.0% 0.840 43 83.8% 

0.860 52 87.1% 0.860 58 86.1% 

0.880 36 88.6% 0.880 49 88.0% 

0.900 47 90.4% 0.900 53 90.2% 

0.920 52 92.5% 0.920 44 91.9% 

0.940 49 94.5% 0.940 48 93.8% 

0.960 48 96.4% 0.960 54 96.0% 

0.980 52 98.5% 0.980 50 98.0% 

More 38 100.0% More 50 100.0% 

Table 19 Data to uniform distribution histogram 
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Analysis of cost used in simulations with triangular distributions 

Histogram Bidder l's cost distribution 
used in equilibrium bidding simulation 

Bin 

Figure 4 Histogram of triangular distribution 

Histogram of Bidder 2's cost distribution 
used in equilibrium bidding simulation 

Bin 

Figure 4 Histogram of triangular distribution 
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Figures three and four shows that the costs used in the equilibrium game 

simulation follow the required triangular pattern of distribution. The cumulative 

percentage represents the cumulative probability distribution of the sample data. 

Cost distribution histogram data for triangular distribution 

Bidder l's cost Bidder 2's cost 

Bin Frequency Cumulative % Bin Frequency Cumulative % 

0.037 1 .1% 0.035 1 .1% 

0.088 4 .3% 0.086 3 .3% 

0.139 11 1.1% 0.137 7 .7% 

0.190 6 1.5% 0.188 13 1.6% 

0.241 8 2.0% 0.239 18 2.8% 

0.293 19 3.3% 0.291 20 4.1% 

0.344 23 4.8% 0.342 33 6.3% 

0.395 29 6.7% 0.393 32 8.5% 

0.446 38 9.3% 0.444 44 11.4% 

0.497 47 12.4% 0.495 27 13.2% 

0.548 39 15.0% 0.546 43 16.1% 

0.599 55 18.7% 0.597 42 18.9% 

0.650 54 22.3% 0.649 39 21.5% 

0.701 53 25.8% 0.700 59 25.4% 

0.752 51 29.2% 0.751 56 29.1% 

0.803 64 33.5% 0.802 54 32.7% 

0.854 73 38.3% 0.853 58 36.6% 

0.905 68 42.9% 0.904 69 41.2% 

0.956 59 46.8% 0.955 68 45.7% 

1.007 74 51.7% 1.007 72 50.5% 

1.058 80 57.1% 1.058 76 55.6% 

1.109 67 61.5% 1.109 60 59.6% 

1.160 70 66.2% 1.160 58 63.5% 

1.211 56 69.9% 1.211 79 68.7% 

1.262 53 73.5% 1.262 67 73.2% 

1.313 49 76.7% 1.313 62 77.3% 

1.364 50 80.1% 1.365 52 80.8% 

1.415 46 83.1% 1.416 40 83.5% 

1.466 43 86.0% 1.467 39 86.1% 

1.517 41 88.7% 1.518 32 88.2% 

1.568 29 90.7% 1.569 37 90.7% 

1.619 33 92.9% 1.620 40 93.3% 

1.670 22 94.3% 1.671 37 95.8% 

1.721 28 96.2% 1.723 12 96.6% 

1.772 16 97.3% 1.774 11 97.3% 

1.824 13 98.1% 1.825 15 98.3% 
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Cost distribution histogram data for triangular distribution 

Bidder l's cost Bidder 2's cost 

Bin Frequency Cumulative % Bin Frequency Cumulative % 

1.875 15 99.1% 1.876 18 99.5% 

1.926 9 99.7% 1.927 4 99.8% 

More 4 100.0% More 3 100.0% 
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APPENDIX F. EXTRACTS FROM THE SIMULATIONS' DATA 

This Appendix provides samples from the simulations' data for the first one 

hundred simulated auctions. The volume of data generated by the simulations precludes 

presenting the full data series. 

1. Two-bidder uniform cost distribution 

Scenario 1 

# Costl Cost2 Bidl Bid2 Payoffl Payoffi 

100 0.366 0.842 0.683 0.921 0.3171 

99 0.84 0.375 0.92 0.688 0.3124 

98 0.194 0.629 0.597 0.814 0.4029 

97 0.303 0.283 0.652 0.642 0.3584 

96 0.817 0.583 0.909 0.792 0.2084 

95 0.342 0.811 0.671 0.906 0.3289 

94 0.216 0.948 0.608 0.974 0.3919 

93 0.665 0.633 0.833 0.817 0.1835 

92 0.728 0.633 0.864 0.816 0.1836 

91 0.334 0.373 0.667 0.687 0.3331 

90 0.055 0.424 0.528 0.712 0.4724 

89 0.555 0.805 0.777 0.902 0.2225 

88 0.177 0.383 0.588 0.691 0.4117 

87 0.102 0.216 0.551 0.608 0.4492 

86 0.559 0.843 0.78 0.921 0.2203 

85 0.956 0.85 0.978 0.925 0.0748 

84 0.917 0.46 0.959 0.73 0.2702 

83 0.624 0.591 0.812 0.795 0.2046 

82 0.979 0.844 0.989 0.922 0.0778 

81 0.314 0.209 0.657 0.605 0.3954 

80 0.327 0.514 0.663 0.757 0.3367 

79 0.517 0.245 0.759 0.623 0.3773 

78 0.188 0.601 0.594 0.8 0.406 

77 0.637 0.286 0.818 0.643 0.3569 

76 0.966 0.692 0.983 0.846 0.1539 

75 0.322 0.931 0.661 0.965 0.339 

74 0.293 0.483 0.646 0.742 0.3537 

73 0.792 0.864 0.896 0.932 0.1039 

72 0.437 0.372 0.719 0.686 0.3142 

71 0.097 0.799 0.548 0.899 0.4516 

70 0.086 0.238 0.543 0.619 0.4571 

69 0.878 0.791 0.939 0.895 0.1046 

68 0.84 0.4 0.92 0.7 0.2999 

67 0.301 0.02 0.65 0.51 0.4899 

66 0.419 0.685 0.71 0.842 0.2904 

65 0.302 0.766 0.651 0.883 0.3488 

64 0.315 0.071 0.657 0.535 0.4646 

63 0.105 0.706 0.553 0.853 0.4473 

62 0.275 0.065 0.637 0.533 0.4674 

61 0.458 0.344 0.729 0.672 0.3279 

60 0.966 0.602 0.983 0.801 0.1992 

59 0.808 0.931 0.904 0.966 0.096 

58 0.296 0.384 0.648 0.692 0.3518 

57 0.796 0.765 0.898 0.882 0.1177 

56 0.176 0.866 0.588 0.933 0.4121 

55 0.019 0.178 0.51 0.589 0.4904 

54 0.323 0.737 0.661 0.868 0.3387 

53 0.374 0.808 0.687 0.904 0.3128 

52 0.336 0.418 0.668 0.709 0.332 

51 0.099 0.149 0.549 0.574 0.4507 

50 0.141 0.275 0.571 0.637 0.4294 

49 0.772 0.863 0.886 0.931 0.1139 

48 0.785 0.167 0.892 0.584 0.4163 

47 0.575 0.802 0.788 0.901 0.2124 

46 0.511 0.564 0.756 0.782 0.2443 

45 0.462 0.245 0.731 0.622 0.3776 

44 0.21 0.126 0.605 0.563 0.4372 

43 0.052 0.455 0.526 0.728 0.474 

42 0.039 0.912 0.519 0.956 0.4805 

41 0.515 0.363 0.758 0.682 0.3183 

40 0.662 0.867 0.831 0.933 0.1691 

39 0.82 0.298 0.91 0.649 0.351 

38 0.123 0.857 0.562 0.928 0.4384 

37 0.674 0.932 0.837 0.966 0.1632 

36 0.134 0.546 0.567 0.773 0.4331 

35 0.342 0.673 0.671 0.836 0.3288 

34 0.165 0.114 0.583 0.557 0.4431 
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33 0.783 0.789 0.892 0.895 0.1084 14 0.241 0.089 0.621 0.544 0.4557 

32 0.56 0.504 0.78 0.752 0.2479 13 0.425 0.368 0.712 0.684 0.3162 

31 0.327 0.209 0.663 0.605 0.3954 12 0.418 0.716 0.709 0.858 0.2908 

30 0.997 0.565 0.999 0.782 0.2177 11 0.26 0.046 0.63 0.523 0.4769 

29 0.181 0.844 0.59 0.922 0.4096 10 0.277 0.32 0.638 0.66 0.3617 

28 0.932 0.716 0.966 0.858 0.1422 9 0.776 0.701 0.888 0.85 0.1495 

27 0.538 0.456 0.769 0.728 0.2719 8 0.422 0.209 0.711 0.604 0.3957 

26 0.525 0.913 0.762 0.957 0.2375 7 0.314 0.234 0.657 0.617 0.3831 

25 0.025 0.294 0.512 0.647 0.4877 6 0.04 0.258 0.52 0.629 0.48 

24 0.404 0.395 0.702 0.698 0.3025 5 0.62 0.151 0.81 0.576 0.4244 

23 0.064 0.822 0.532 0.911 0.4682 4 0.316 0.354 0.658 0.677 0.3419 

22 0.318 0.668 0.659 0.834 0.341 3 0.791 0.887 0.895 0.944 0.1047 

21 0.111 0.221 0.555 0.61 0.4446 2 0.309 0.649 0.654 0.824 0.3456 

20 0.807 0.424 0.903 0.712 0.2882 1 0.008 0.845 0.504 0.922 0.496 

19 0.281 0.957 0.641 0.978 0.3595 Win   Win 
Prof 1 Prof 2 
0.386 0.268 

s      z 
19.298   13.401 

18 0.402 0.612 0.701 0.806 0.2989 

17 0.269 0.79 0.635 0.895 0.3654 

16 0.547 0.501 0.774 0.75 0.2497 

15 0.492 0.204 0.746 0.602 0.3982 

2. Three-bidder uniform cost distribution 

Scenario 1 

high 1 low 0 3 Bidders Equilibrium 

Costl Cost2 Cost3 Bidl Bid2 Bid3 Payoffl PayoflQ Payofß 

1 

0.844 0.216 0.36 0.896 0.477 0.573 0.2613 

0.961 0.953 0.575 0.974 0.968 0.717 0.1417 

0.262 0.839 0.486 0.508 0.893 0.657 0.246 

0.213 0.074 0.708 0.475 0.383 0.805 0.3086 

0.583 0.044 0.997 0.722 0.363 0.998 0.3187 

0.769 0.365 0.084 0.846 0.576 0.389 0.3055 

0.381 0.347 0.617 0.588 0.564 0.745 0.2178 

0.503 0.556 0.453 0.669 0.704 0.636 0.1822 

0.219 0.447 0.101 0.48 0.631 0.4 0.2998 

0.694 0.037 0.972 0.796 0.358 0.981 0.3211 

0.954 0.172 0.769 0.969 0.448 0.846 0.2762 

0.856 0.698 0.676 0.904 0.799 0.784 0.1079 

0.059 0.665 0.48 0.373 0.777 0.654 0.314 

0.592 0.874 0.118 0.728 0.916 0.412 0.294 

0.44 0.476 0.815 0.627 0.65 0.877 0.187 

0.779 0.383 0.508 0.853 0.589 0.672 0.2056 
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0.47 0.426 0.469 0.647 0.617 0.646 0.1913 

0.677 0.623 0.112 0.785 0.749 0.408 0.2958 

0.927 0.814 0.652 0.951 0.876 0.768 0.1161 

0.889 0.979 0.188 0.926 0.986 0.459 0.2707 

0.864 0.318 0.821 0.909 0.545 0.881 0.2274 

0.36 0.784 0.249 0.573 0.856 0.5 0.2502 

0.171 0.573 0.155 0.447 0.715 0.437 0.2817 

0.101 0.932 0.82 0.401 0.954 0.88 0.3 

0.642 0.876 0.724 0.761 0.917 0.816 0.119 

0.066 0.771 0.224 0.377 0.847 0.483 0.311 

0.353 0.74 0.764 0.569 0.827 0.842 0.216 

0.454 0.074 0.043 0.636 0.382 0.362 0.3191 

0.216 0.688 0.932 0.478 0.792 0.955 0.261 

0.444 0.76 0.133 0.629 0.84 0.422 0.2891 

0.964 0.295 0.181 0.976 0.53 0.454 0.273 

0.377 0.759 0.874 0.585 0.839 0.916 0.208 

0.627 0.449 0.921 0.751 0.633 0.947 0.1837 

0.517 0.544 0.022 0.678 0.696 0.348 0.3261 

0.044 0.072 0.047 0.363 0.382 0.365 0.319 

0.487 0.355 0.555 0.658 0.57 0.703 0.215 

0.224 0.121 0.759 0.483 0.414 0.839 0.2928 

0.466 0.111 0.33 0.644 0.408 0.553 0.2962 

0.3 0.796 0.656 0.533 0.864 0.77 0.233 

0.902 0.088 0.672 0.935 0.392 0.781 0.304 

0.674 0.648 0.804 0.783 0.765 0.87 0.1174 

0.906 0.692 0.133 0.938 0.795 0.422 0.2889 

0.657 0.875 0.216 0.772 0.916 0.477 0.2613 

0.317 0.855 0.581 0.545 0.904 0.721 0.228 

0.904 0.523 0.727 0.936 0.682 0.818 0.1589 

0.675 0.339 0.585 0.783 0.559 0.723 0.2203 

0.156 0.144 0.367 0.437 0.429 0.578 0.2854 

0.377 0.757 0.89 0.584 0.838 0.926 0.208 

0.174 0.129 0.916 0.449 0.42 0.944 0.2902 

0.623 0.872 0.102 0.749 0.914 0.401 0.2993 

0.915 0.745 0.985 0.943 0.83 0.99 0.0849 

0.125 0.653 0.591 0.416 0.769 0.728 0.292 

0.389 0.97 0.493 0.593 0.98 0.662 0.204 

0.487 0.575 0.426 0.658 0.717 0.617 0.1915 

0.287 0.21 0.098 0.525 0.473 0.398 0.3008 

0.272 0.995 0.465 0.514 0.997 0.644 0.243 

0.64 0.722 0.973 0.76 0.814 0.982 0.12 

0.96 0.996 0.891 0.973 0.997 0.928 0.0362 

0.049 0.9 0.348 0.366 0.934 0.566 0.317 

0.403 0.467 0.703 0.602 0.645 0.802 0.199 
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0.79 0.048 0.919 0.86 0.366 0.946 0.3172 

0.003 0.961 0.966 0.335 0.974 0.977 0.332 

0.365 0.23 0.78 0.577 0.487 0.853 0.2567 

0.104 0.482 0.548 0.403 0.655 0.699 0.299 

0.143 0.19 0.142 0.428 0.46 0.428 0.286 

0.453 0.521 0.803 0.635 0.681 0.868 0.182 

0.212 0.407 0.346 0.475 0.604 0.564 0.263 

0.196 0.19 0.729 0.464 0.46 0.819 0.2701 

0.457 0.094 0.147 0.638 0.396 0.431 0.3021 

0.785 0.314 0.307 0.857 0.543 0.538 0.2309 

0.348 0.377 0.55 0.565 0.585 0.7 0.217 

0.531 0.969 0.29 0.687 0.979 0.527 0.2366 

0.911 0.626 0.112 0.941 0.751 0.408 0.2959 

0.461 0.516 0.259 0.641 0.677 0.506 0.2471 

0.483 0.821 0.916 0.656 0.881 0.944 0.172 

0.916 0.883 0.593 0.944 0.922 0.729 0.1356 

0.608 0.67 0.829 0.739 0.78 0.886 0.131 

0.504 0.481 0.333 0.67 0.654 0.555 0.2223 

0.799 0.15 0.348 0.866 0.434 0.565 0.2832 

0.363 0.456 0.373 0.575 0.638 0.582 0.212 

0.961 0.812 0.052 0.974 0.874 0.368 0.316 

0.61 0.105 0.884 0.74 0.403 0.923 0.2983 

0.177 0.14 0.256 0.452 0.427 0.504 0.2867 

0.319 0.948 0.076 0.546 0.965 0.384 0.3079 

0.228 0.433 0.169 0.485 0.622 0.446 0.277 

0.207 0.743 0.931 0.472 0.829 0.954 0.264 

0.126 0.673 0.774 0.417 0.782 0.849 0.291 

0.399 0.725 0.942 0.599 0.816 0.961 0.2 

0.666 0.061 0.707 0.777 0.374 0.804 0.313 

0.68 0.164 0.396 0.787 0.443 0.598 0.2785 

0.34 0.646 0.254 0.56 0.764 0.502 0.2488 

0.722 0.013 0.559 0.814 0.342 0.706 0.329 

0.956 0.543 0.452 0.971 0.695 0.635 0.1825 

0.802 0.659 0.585 0.868 0.772 0.723 0.1384 

0.921 0.382 0.857 0.948 0.588 0.904 0.2059 

0.169 0.587 0.339 0.446 0.724 0.559 0.277 

0.84 0.498 0.018 0.894 0.665 0.345 0.3273 

0.173 0.69 0.308 0.449 0.793 0.538 0.276 

0.831 0.185 0.108 0.887 0.456 0.405 0.2973 

0.921 0.297 0.556 0.947 0.531 0.704 0.2343 

Bl B2 B3 Tpr.l Tpr2 Tpr3 

Average Prof 0.076 0.082 0.089 7.64 8.152 8.8805 100 

Winning Prof 0.239 0.255 0.247 32 32 36 
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